
Proceedings of the IASS 2024 Symposium  

Redefining the Art of Structural Design 

August 26-30, 2024, Zurich Switzerland 

Philippe Block, Giulia Boller, Catherine DeWolf,  

Jacqueline Pauli, Walter Kaufmann (eds.) 

 
 

 

 

Copyright © 2024 by <Yafeng WANG, Xian XU, Yaozhi LUO> 

Published by the International Association for Shell and Spatial Structures (IASS) with permission. 

 

Topology Optimization of Active Tensegrity Structures 

Yafeng WANG*, Xian XU, Yaozhi LUO 

College of Civil Engineering and Architecture, Zhejiang University 

866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China 

*yafengwang@zju.edu.cn 

 

Abstract 

This study investigates the optimum design of active tensegrity structures through topology optimization. 

Due to the integration of the active control system, the topology design of active tensegrity structures is 

different from passive tensegrity structures. The member topology and actuator layout are considered as 

binary design variables in the optimization and their coupling relation is handled by auxiliary constraints. 

The member cross-sectional areas, prestress, and control strategies (i.e., actuator length changes) are 

treated as continuous variables and designed simultaneously. The equilibrium condition, member 

yielding, cable slackness, strut buckling, and the limitations on the nodal displacements as well as other 

practical requirements are formulated as constraints. Typical benchmark examples indicate that the 

active designs obtained through the proposed topology optimization method can significantly decrease 

structure mass compared with conventional active tensegrity designs and thus leading to more 

lightweight tensegrity structures. 

Keywords: topology optimization; active tensegrity structure; mixed integer programming; lightweight structures 

1. Introduction 

Tensegrity structures are self-stressed pin-jointed systems consisting of cables and struts that only carry 

axial forces. Appropriate initial selfstress needs to be introduced into a tensegrity structure to maintain 

its stable equilibrium. Due to their unique characteristics, tensegrity systems have been widely applied 

in many engineering and scientific fields [1–3]. 

Mass-efficiency is one of the main advantages of tensegrity structures because the members only need 

to carry axial forces thus have a better performance in terms of material utilization. Generally, tensegrity 

structures have a high stiffness-to-weight ratio and for this reason have been applied to design 

lightweight structures and tremendes methods have been proposed to minimize the weight/mass of 

tensegrity structures [4–6]. Most applications and design methods of lightweight tensegrity structures 

focus on passive tensegrity systems, i.e., all the members in the system are passive and not be capable 

of changing their length actively to react to external loads. The structural members of passive tensegrity 

structures cannot change their lengths actively and thus have to passively resist external loads. Active 

tensegrity structures are equipped with actuators to actively adapt the internal forces and nodal positions 

and thus can actively resist external loads. It has been verified that active tensegrity structures can use 

less material compared to passive tensegrity structures [7]. Existing studies on active tensegrity structure 

optimum design only focus on sizing and/or shape optimization, i.e., the structural element topology 

does not change during the design process, which vastly limits the design space and the improvement of 

mass-saving structural performance. 

This paper aims to develop a general framework for the topology design of minimal mass active 

tensegrity structures. Both the parameters relating to the structural system (e.g., prestress and member 

cross-sectional areas) and the structural topology (e.g., member connectivities and actuator layout) are 
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incorporated and designed simultaneously. The member topology and actuator layout are considered as 

binary design variables in the optimization and their coupling relation is handled by auxiliary constraints. 

The member cross-sectional areas, prestress, and control strategies (i.e., actuator length changes) are 

treated as continuous variables and designed simultaneously. The equilibrium condition, member 

yielding, cable slackness, strut buckling, and the limitations on the nodal displacements as well as other 

practical requirements are formulated as constraints. Typical benchmark examples indicate that the 

active designs obtained through the proposed topology optimization method can significantly decrease 

the material consumption compared with the equivalent topology-optimized passive designs and thus 

leading to more lightweight tensegrity structures. 

2. Basic Formulations for Active Tensegrity Structures 

Without loss of generality, an active tensegrity structure with n nodes and m members equipped with c 

actuators in a three-dimensional Cartesian space is considered. E is used to denote the set of the indices 

of members in the structure and iE  is used to denote the set of the indices of members connecting to 

node i. C and S are used to denote the sets of the indices of cables and struts, respectively. fn  is used to 

denote the number of free degrees of freedom (DOFs). iY , i , ia , and il  are used to denote the material 

Young’s modules, material density, cross-sectional area, and length of member i, respectively. 

2.1 Initial self-stress 

Tensegrity structures are self-equilibrated systems consisting of tensile cables and compression struts. 

To maintain a equilibrium state, the initial prestress 0 1mF in the structure should satisfy 

  
0 =AF 0    (1) 

where 
fn mA  is the equilibrium matrix of the structure [8]. To ensure member unilateral rigidity (i.e., 

cables in tension and struts in compression) in prestress state, 0
F  should satisfy 

 

0

0

0,         

0,         

i

i

F i C

F i S

   


      (2) 

Note that for a kinematically indeterminate tensegrity system, in addition to Eq. (1) the prestress should 

also ensure it be capable of stiffening all the internal mechanism modes [9]. 

2.2 Equilibrium and compatibility 

Under a given nodal load 
1fn P , the equilibrium of the tensegrity structure can be expressed as 

  s= +AF P P    (3) 

where 1s mP  is the self-weight load and F is the member internal force vector caused by nodal 

loading. The member force 1mF  is related by the member elastic elongation 1me  according to 

the constitutive law as 

   =F Be    (4) 

According to the compatibility condition, the relation between the nodal displacement u, the member 

elastic elongation e, and the member active elongation 
1m L  is given by 

  
T = +A u e L    (5) 

Substituting Eq. (5) into Eq. (4) gives 

  ( )T = −F A uB L
   (6) 
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where m mB  is the diagonal member stiffness matrix given by diag i i

i

Y a

l

 
=  

 
B . Note that, similar to 

the nodal displacements, member force F in Eq. (6) can be divided into two parts which correspond to 

the effects of external load P and the effects of actuation, respectively. In addition, F in Eq. (6) only 

denotes the part of the member force caused by the external load P and the effects of actuation; the total 

member force should also include the prestress 0
F . 

2.3 Structure mass and self-weight 

The mass of an active tensegrity structure is denoted as M which is composed of two parts: the mass of 

members mM  and the mass of actuators aM , i.e., 

  m aM M M= +    (7) 

The mass of members can be determined by 

  
m i i i

i E

M l a


=
   (8) 

The mass of an actuator usually depends on its actuation force capacity, i.e., the maximum actuation 

force it can resist. The mass of an actuator is assumed proportional to its actuation force capacity. The 

actuation force capacity of the ith actuator is denoted as iF , and then the mass of the actuators can be 

expressed as 

  a

a i

i E

M cF


=
   (9) 

where aE  denotes the set of the indices of the actuators; and c is the proportional factor which takes the 

value of 0.1kg/kN according to [10]. 

Assume the weight of members and actuators are transformed into equivalent nodal loads. The weight 

of a member and the actuator installed on it is assumed to be evenly distributed to the two nodes it 

connects. Therefore, the weight applied to the ith node can be determined by 

 

1

2
i a i

i j j j j

j E j E E

W l a c F g
 

 
= +  

 
 

  (10) 

where g is the gravity and takes a value of 9.8 N/kg. 

3. Topology Optimization Model 

As introduced in Section 2, the topology optimization is carried out based on ground structure method, 

hence the formulations in Section 3 should also be expressed in terms of the whole ground structure. 

The key point to make this modification is that the candidate members in the ground structure may be 

unnecessary to form the final structure, and these unnecessary members should be ensured to have zero 

cross-sectional areas and forces in the optimization. In addition, some parameters such as C, S, and aE  

are unknown in advance hence the corresponding formulations should be re-expressed in the 

optimization. In the following content, E and iE  are used to respectively denote the sets of the indices 

of all the candidate members and the members connecting to node i in the ground structure. 

3.1 Design constraints 

3.1.1 Equilibrium Constraints 

The first equilibrium constraint is the self-equilibrium condition of the initial prestress, which is 

described by Eq. (1). The second equilibrium constraint is the relation between the nodal loads and 

corresponding member forces, which is described by Eq. (3). 
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3.1.2 Member yielding and cable slackness constraints 

The member stress must be within the allowable stress limit. In a tensegrity structure, cables and struts 

can be made of different materials and thus have different admissible stress limits, denoted as c  and 

s , respectively. Besides, since cables should always carry tension thus the stress of a cable should be 

always greater than zero. Note that the struts should be in compression in the prestress state but can be 

either in compression or tension in the load state. Use small positive values c  and s  to denote the 

absolute values of the minimum allowable stress of cables and struts respectively, then the member 

yielding and cable slackness condition can be expressed as 

 

under prestress state

under load state
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

 

，

  (11) 

where N is the set of members to be removed. Since the member types, i.e., C, S, N, are not predefined 

in a topology optimization procedure, constraint Eq. (11) cannot be expressed by only using the member 

internal force variables. To express the constraints mathematically and explicitly, vectors 1ms  and 
1mc , whose entries are binary variables, are introduced here. By using variables s and c together 

with member force variable F, Eq. (11) can be re-expressed as 

 

0

0
,       

s cc si i i i i i i i i

s s cci i i i i i i i i i

a s a c F a s a c
i E

a s a c F F a s a c

   

   

− +   − +
 

− +  +  +   (12) 

Note that a member cannot be served as cable and strut simultaneously, variables s and c should satisfy 

the following constraint 

 1,       i is c i E+       (13) 

3.1.3 Strut buckling constraint 

In addition to yielding, buckling is a critical issue that must be avoided for struts. This can be written as 

 ,       b

i iF F i S−       (14) 

where iF  is the current internal force of strut i and 
b

iF  is the buckling load of strut i which mainly 

depends on the cross-section, length, and material property of the member. Without loss of generality, 

the Euler buckling load is considered in this study, i.e., 
b

iF  is given by 

 

2

2
,       b i i

i

i

Y I
F i S

l


=  

   (15) 

where iI  is the moment of inertia of the cross-section. 

It is known that for different cross-sectional forms, the moment of inertia has different expressions in 

terms of the cross-sectional dimensions. For the sake of simplification, steel tubes with circular hollow 

sections are adopted for struts in this study, and the thickness is assumed to be a specified ratio of the 

radius. In this case, the moment of inertia of the cross-section can be expressed as a function of the cross-

sectional area, i.e., 

 ( ) ,       i iI f a i S=      (16) 

thus Eq. (15) can be simplified to 
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2 ,       b

i i iF a i S=      (17) 

where i  is the coefficient determined by the length of strut i. Then Eq. (14) can be re-expressed as 

 
2 ,       i i ia F i E−       (18) 

Note that since S is unknown in advance, constraint Eq. (18) applies to all the candidate members in the 

optimization because for members to be served as cables or removed the constraint will be automatically 

satisfied. 

3.1.4 Displacement constraint 

To ensure the serviceability of the structure, the displacements of certain DOFs need to be kept within 

a limit. Denote the lower bound and upper bound for the ith DOF as 
iu  and iu , respectively, then the 

displacement limit condition is expressed by 

 
,      i i iu u u i D   

   (19) 

where D denotes the set of the indices of the DOFs needed to be controlled. 

3.1.5 Constraints for actuator layout and length changes 

To mathematically describe the actuator layout eliminate aE  in Eq. (9), a vector 
1mχ  whose entries 

are binary variables, is introduced. The relation between and the actuator layout is defined as follows: if 

1i = , it means that the ith member is equipped with an actuator; if 0i = , it means the ith member is 

not equipped with an actuator and serves as a passive member or to be removed. 

Since only members equipped with actuators can actively change their lengths and the length change of 

an actuator cannot be too large and should be within a reasonable range, the member length change L  

and actuator layout variable χ  should satisfy the following relation 

 
,       i i iL L L i E −       

  (20) 

where L  is the maximum length change of an actuator (shorten or lengthen). This constraint ensures 

that iL  is zero if 0i =  and ,iL L L   − 
 

 if 1i = . Besides, it might be needed to assign a lower 

and/or upper bound for the number of actuators, which can be simply realized by incorporating the 

following constraint 

  
i

i E

  


 
   (21) 

where   and   are the user-defined lower and upper bound for the number of the actuators. If a 

specified number of actuators is required,   and   can be set to the same as that value. 

Since the actuator layout and member topology are coupled with each other, the relation between 

variables χ , s, and c should also be considered in the optimization, i.e., 

 ,       i i is c i E  +      (22) 

Without other constraints, the actuators can freely choose to be installed on either struts or cables. 

Considering the layout preferences, another two actuator layout modes :(1) all the actuators installed on 

struts, and (2) all the actuators installed on cables, can be adopted by replacing Eq. (22). The first mode 

can be realized by including the following constraints 

  ,       i is i E       (23) 
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Similarly, the second mode can be realized by including 

  ,       i ic i E       (24) 

3.1.6 Constraints for structure mass and self-weight 

When building the formulation of structure mass in the optimization model, the actuator mass cannot be 

constructed directly through Eq. (9). This is because the actuation force capacity of the actuators (i.e., 

iF ) is unknown in advance and the actuator index set aE  is also not predefined. 

Since the actuation force capacity of an actuator relates to the maximum force that the corresponding 

member will carry, an auxiliary variable iF  is introduced here to approximate iF . iF  is defined through 

the following constraint 

 ,       i i iF F F i E−        (25) 

which means that iF  is an upper bound of the internal forces of member i. Therefore, iF  is also a lower 

bound of the actuator actuation force capacity if an actuator needs to be installed in member i. This way, 

iF  in Eqs. (9) and (10) can be replaced with iF  to express the mass of the actuators. Note that iF  in Eq. 

(25) denotes the current total internal force of member i: if there are no nodal loads and actuator control 

strategies apply to the structure, 
0

i iF F= , otherwise, 
0 e

i i iF F F= +  where 
e

iF  denotes the internal force 

of member i caused by the nodal loads and actuator length changes. 

Through the definition of χ , it can be noticed that if member i is an active member, i.e., 1i = , then 

the mass of the corresponding actuator is ( )i i icF c F= ; if member i is a passive member or to be 

removed, i.e., 0i = , then we can assume a virtual actuator with a zero mass is equipped in this member 

thus the corresponding actuator mass can also be expressed as i ic F . Therefore, by using the auxiliary 

variable iF  and the actuator layout variable χ , the mass of the actuators (i.e., Eq. (9)) can be re-

expressed as 

  
a i i

i E

M c F


=
   (26) 

Similarly, the self-weight applied to the ith node Eq. (10) can be re-expressed as 

 

1

2
i i

i j j j j j

j E j E

W l a c F g 
 

 
= +  

 
 

   (27) 

Then the self-weight load vector s
P  can be constructed through Eq. (27). 

3.1.7 Constraints for structure mass and self-weight 

Considering the convenience of manufacturing and the availability of components in practical structure 

construction, some constraints can be enforced in the design.  

 (1) Lower and upper bounds for cross-sectional areas 

To ensure the members used are commercially available, the cross-sectional areas of the members must 

be within a given range. This requirement is formulated into a constraint on the cross-sectional areas of 

members, i.e., 

 
,       s i c i i s i c ia s a c a a s a c i E+   +  

   (28) 
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where 
ca  and 

sa  are the lower bounds for the cross-sectional areas of cables and struts respectively; 

and ca  and sa  are the upper bounds for the cross-sectional areas of cables and struts respectively. 

 (2) Avoidance of member intersection 

The existence of intersecting members may cause problems in manufacturing, hence the following 

constraint can be considered if necessary to avoid member intersection 

 ( )'' ' 1,    , cross

i i i is s c c i i E+ + +   
  (29) 

where crossE  collects the pairs of intersecting members in the ground structure. 

(3) Actuator force capacity limit 

The actuators available in practice may have an actuation force capacity limit, so in order to ensure that 

the forces carried by the actuators do not exceed the limit, the following constraint can be considered 

  ,       
act

i iF T i E      (30) 

where 
act

T  is the actuation force capacity limit of available actuators. 

3.2 Objective function 

The total mass of the structure, i.e., Eq. (7), is adopted as the objective function, which is given by 

 ( )m a i i i i i

i E

M M M l a c F 


= + = +   (31) 

3.3 Optimization variables 

In the formulated constraints and objective function, all the unknown parameters will be treated as 

optimization variables. The optimization variables can be divided into three types: design variables, state 

variables, and auxiliary variables. The design variables are independent structure parameters that 

determine the structure state; design variables include cross-sectional areas (i.e., assignment matrix S), 

member types (i.e., s and c), member prestress (i.e., 0
F ), and actuator layout (i.e., χ ) and length changes 

(i.e., L ). The state variables are parameters to describe the structure state and responses under the 

given design variables such as member forces and elastic elongations and nodal displacements caused 

by external loading. Auxiliary variables are variables that may have no explicit physical meaning but 

are introduced to better express some necessary constraints correctly and accurately, such as maximum 

member force F . 

4. Numerical Examples 

A ground structure in Figure 1 is considered for topology optimization in this example. The positions of 

key nodes of the ground structure are from a Levy cable dome with a span of 50 m. The 145 candidate 

members in the ground structure contain all the members in the original Levy cable dome together with 

some additional members connecting some of the key nodes. All the DOFs of the surrounding nodes are 

fixed. Assume that a dead load of P1 = 1.0 kN/m2 is evenly distributed on the top of the structure. Two 

live loads are considered: the first live load P2 = 0.5 kN/m2 is full-span and evenly applied downward, 

and the second live load P3 = 0.5 kN/m2 is half-span and evenly applied downward. All the loads are 

equivalently transformed into nodal loads applied to the top of the structure. Three load cases as follows 

are considered in the optimization: (1) P1, (2) P1 + P2, and (3) P1 + P3. No crossing members are allowed 

in the final optimized structure. 

Assume that circular steel tubes and high-strength steel strands are used for struts and cables, 

respectively. The thickness of the circular steel tubes is assumed to be 10% of the radius. Struts and 

cables are assumed to have the same material density of 7.85 × 103/m3 and Young’s modulus of 206 

GPa. The design strengths for steel tubes and high-strength steel strands are 310 MPa and 1260 MPa, 



Proceedings of the IASS Symposium 2024 

Redefining the Art of Structural Design 
 

 

 8 

 

respectively. The lower bounds of stresses in members are set to 5% of the maximum allowable stresses, 

i.e., 5% cc =  and 5% ss = .The displacements of the loaded DOFs are required to be within a limit 

of span/250. The limit for the length changes of actuators is set to 250 mmL = . 

 

Figure 1 Ground structure for cable dome topology optimization 

Firstly, the actuator layout is set to be able to be installed on both struts and cables and no limits are set 

for actuation force capacity. Solving the corresponding optimization model results in an optimized 

design shown in Figure 2(a). The structure has a total of 105 members consisting of 17 struts and 88 

cables. It can be seen that all the struts on the bottom layer are installed with actuators. In addition, the 

eight circle cables on the second layer are also equipped with actuators. The maximum force carried by 

the actuators is 427.16 kN. The structure has a total mass of 5206.58 kg consisting of 4550.13 kg member 

and 656.45 kg actuator. Notably, stability check reveals that the structure has eight internal mechanism 

modes but all of them can be stiffened by the prestress and thus the structure is a prestress-stable system. 

For comparison, an active structure is also optimized based on the conventional Levy cable dome in 

which only the cross-sectional areas together with the actuator layout are treated as design variables. 

Figure 2(b) shows the optimized design. Since the member topology is fixed in the optimization, the 

obtained structure has 113 members consisting of 17 struts and 96 cables. The strut topology is identical 

to that in the previous design but the cable topology differs. In addition, 24 members including 16 struts 

and 8 cables are equipped with actuators, which is more than the previous topology-optimized design. 

The maximum force carried by the actuators is 420.12 kN. This active Levy cable dome has a total mass 

of 5456.66 kg consisting of 4966.91 kg member mass and 489.75 kg actuator mass. By comparing the 

two designs we can see that the optimized active structure through topology optimization achieves 4.58% 

smaller mass compared with the optimized active structure based on the conventional Levy cable dome. 

 a    

 c 

  

 2

  

  0
  00

2 00

2 00
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Figure 2 Optimized active cable domes without considering actuator positions and actuation capacity limit: (a) 

topology-optimized design and (b) sizing-optimized design based on conventional Levy cable dome 

Next, the actuator layout is set to be able to be installed on only struts, and the same two optimizations 

as mentioned above are carried out. Figure 3 shows the two obtained optimized structures. It can be seen 

that all the actuators are installed on the struts for both of the two optimized structures. The optimized 

design through topology optimization has a different member topology compared with the optimized 

design in Figure 2(a) and the structure is a kinematically determinate system without internal mechanism 

mode. Regarding the structure mass, the optimized design through topology optimization has a total 

mass of 5492.17 kg and the optimized active Levy cable dome has a mass of 5627.37 kg, which are both 

slightly higher than the corresponding designs allowing actuators to be installed on both cables and struts. 

The maximum forces carried by the actuators in the two structures are 428.12 kN and 430.97 kN, 

respectively. As can be seen, the maximum forces carried by the actuators in the four optimized designs 

are all above 400 kN. 

 

Figure 3 Optimized active cable domes considering actuator positions but not considering actuation capacity 

limit: (a) topology-optimized design and (b) sizing-optimized design based on conventional Levy cable dome 

Then, the actuator layout is still set to be able to be installed on only struts, and the actuation force 

capacity limit of actuators is set as 400 kN, then the same two optimizations as mentioned above are 

carried out. The obtained results are shown in Figure 4. As can be seen, for both of the two optimized 

structures, the actuators only distribute on the struts of the upper two layers, which is beneficial to reduce 

the maximum force carried by the actuators. In this way, the maximum forces carried by the actuators 

in the two structures are respectively only 102.63 kN and 169.05 kN, which significantly decreases 

compared to the previous two designs in Figure 3. However, the reduction of actuation forces leads to a 

significantly higher structure mass of 6326.83 kg and 6834.51 kg respectively for the two structures. 

 a    

 a    
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Figure 4 Optimized active cable domes considering actuator positions and actuation capacity limit: (a) 

topology-optimized design and (b) sizing-optimized design based on conventional Levy cable dome 

5. Conclusions 

This study proposes a general framework for the topology optimization of active tensegrity structures. 

Various design parameters, such as the actuator layout and actuator force capacity limit, are introduced 

in the optimization model, which allows to tune the design results according to practical design 

requirements and preferences. A cable dome example is employed to demonstrate the effectiveness of 

the proposed approach to design novel active structures with lighter weight. 
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