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Abstract 
Topology optimization (TO) is a design optimization method known to generate high-performing 
structures with a limited volume of material. TO has great potential in the construction industry because 
it can help reduce the use of building materials, which produce approximately 10% of greenhouse gasses 
worldwide. Within existing research on TO for construction, tailoring algorithms specifically to 
reinforced concrete (RC) design has received considerable attention. This research presents a new 
framework for topology optimization of RC. Continuum elements in compression and truss elements in 
tension are used together to represent concrete and steel, respectively. The locations of the nodes of the 
truss elements are controlled by design variables, and moved during the optimization process. Also, 
SIMP penalization schemes are not used on the continuum elements, so that their respective design 
variables can take intermediate values between 0 and 1. These values are interpreted as varying 
thicknesses in the final design, following the Variable Thickness Sheet method. The performance of 
numerical design examples is compared herein, so that optimized designs can be fabricated and tested 
to demonstrate their efficacy in future work. 

Keywords: Topology optimization, digital concrete, reinforced concrete design, structural optimization, low weight 
design 

1. Introduction 
Topology optimization (TO) of reinforced concrete (RC) is an important field of research because it has 
potential to reduce the high Carbon emissions of the construction industry, which are estimated to make 
up 10% of all CO2 emitted globally [1]. TO is a design optimization method known to generate high-
performing structures with a limited volume of material [2]. In general, a structural TO is performed on 
a design space of 2D finite elements, referred to as continuum elements, with isotropic behavior. 
However, RC is a composite system consisting of both concrete and steel, which have distinct behavioral 
characteristics. Namely, concrete is strong in compression, but is not effective when acting in tension. 
For this reason, steel is added to the tension zones of RC structures to resist any relevant tensile forces. 
Therefore, a TO framework for RC design must capture the relationship between these two materials 
during the optimization process, and place the concrete and steel appropriately.  

There has already been substantial research in TO for design of RC structures [3]. A common approach 
is to use a TO framework to define strut-and-tie solutions for a RC component, either with continuum 
or truss elements [4], [5], [6], [7]. Another strategy is to allow the optimization to place two different 
continuum materials with different stiffnesses in tension and compression [8], [9]. Different Drucker-
Prager stress constraints have also been placed two continuum materials to simulate the two materials 
of RC [10], [11]. Another popular method is to use a combined system of truss and continuum elements, 
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with trusses representing steel and continuum representing concrete. Following this approach, trusses 
have been placed in zones where the concrete experiences damage [12], [13]. Alternatively, the 
stiffnesses of the trusses can been reduced when they are compressive, while the continuum stiffness is 
reduced when it is in tension [14]. 

In addition, an exciting new theme of research has been to fabricate and test RC structures designed with 
TO to experimentally validate the efficacy of the methodology [15], [16], [17], [18], [19].   

This research draws heavily from the work of Gaynor et al. [14], and builds on previous publications by 
the authors [19]. Examples from that research with combined truss and continuum structural systems are 
shown in Figure 1. The optimization framework presented here is novel because the nodes of the trusses 
are allowed to move, following the methods from Zegard and Paulino [20]. It also explores the potential 
of the Variable Thickness Sheet (VTS) method, as highlighted by Sigmund et al. [21]. 

 
Figure 1: On left, an initial ground structure for a simply supported beam optimization, with truss elements 
shown in red and the continuum material shown in gray. On right, the optimized result, with continuum material 
acting in compression and truss elements in tension. This figure is adapted from [19].  

2. Methods 
This research uses topology optimization (TO) to design low-weight reinforced concrete (RC) elements. 
RC consists of two materials: concrete acting primarily in compression, and reinforcing steel in tension. 
The optimization must, therefore, correctly place these two different materials to take the forces within 
the structural system as efficiently as possible. In this research, the concrete will be designed using 
continuum elements, and the reinforcement using a truss element discretization. The problem 
formulation for the optimization is as follows: 

min 
xc, xt  

𝑐(𝐱!, 𝐱") = 	𝐔#𝐊𝐔  

 

(1) 
s. t. 𝐊𝐔 = 	𝐅 

𝑉$(𝐱!) ≤ 𝑓$ 

𝑉%(𝐱") ≤ 𝑓% 

𝟎 ≤ 𝐱!, 𝐱% ≤ 𝟏 

 

Where c is the objective function, which is the compliance in this case. K is the global stiffness matrix, 
U is the displacement vector, and F is the force vector. Vc is the total volume of continuum material in 
the system, and fc is a user-defined constraint on the maximum allowable continuum volume. Vt is the 
total volume of truss material, and ft is a user-defined constraint on the maximum allowable truss volume. 
xc is the set of all design variables that control continuum material, and xt is the set of all design variables 
that control truss material.  

These design goals are achieved using three strategies. First, a truss-continuum hybrid structural system 
is used, with force-dependent orthotropy enforced on all members. Additionally, the nodes of the truss 
elements can be moved by design variables (DVs) with methods that are differentiable. Last, the DVs 
controlling the placement of continuum elements are not penalized for intermediate densities, so the 
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Variable Thickness Sheet (VTS) geometries can be obtained. The implementation of these strategies are 
described below.  

2.1. Force-dependent stiffnesses 
Enforcement of force-dependent stiffnesses is crucial for RC design. For this research, methods must be 
used to ensure that continuum elements are favored for compressive forces, while truss members are 
favored for tension forces. These conditions are enforced by adding an additional step to the optimization 
loop. In this new step, the stiffnesses of the truss and continuum elements are defined through an iterative 
process depending on their internal forces, as shown in Figure 2a. Essentially, this adds an inner loop to 
the beginning of each step of the optimization loop.  

The method for assigning the truss stiffness is straightforward. For each truss element, the displacement 
of each of its two nodes is calculated as an interpolation of their 4 nearest continuum nodes. If the 
deflection between these interpolated values is positive, the element has tensile stress, while if the 
deflection is negative, the stress is compressive. Tensile elements are assigned a high elastic modulus 
value, while compressive elements are assigned a very low value approaching zero, shown in Figure 2b 
and 2c. 

The continuum elements are two dimensional, and the higher dimensionality leads to more complexity 
in how stiffnesses are assigned. When the FEA is performed, the stresses in each element can be 
calculated. For a 2D structure, each element has a stress in the X and Y direction, 𝜎! and 𝜎", and a shear 
stress, 𝜎!", as shown in Figure 2d. Principal stresses can be calculated from these global stress values, 
which are equivalent normal stresses with associated shear stresses of zero. Principal stresses also have 
a corresponding principal angle, 𝜃. These are illustrated in Figure 2e. In this work, the principal stresses 
of each element are calculated, and the local stiffness matrix of the element 𝐾# is modified based on 
their directionality. If the principal stress is negative, a high stiffness is assigned in the corresponding 
direction, and if it is positive, and low stiffness is assigned.  

The stiffness values for truss and continuum elements in tension and compression correspond to those 
shown in Figure 2a. It should be noted that the values used do not reflect the true stiffnesses of concrete 
and steel, but rather allow the optimization to converge on useful results.  

 

 

 

 
Compression truss, 

low stiffness 

 
Tension truss, 
high stiffness 

(b) (c) 

 
Example 2D stress state 

 
Example principal 

stresses 

(a) (d) (e) 

Figure 2: in (a), the stiffnesses of continuum and truss members under tension and compression are shown 
graphically. (b) and (c) show how the stress states on truss elements are used to assign appropriate stiffnesses. A 



Proceedings of the IASS Symposium 2024 
Redefining the Art of Structural Design 

 

 

 4 

 

possible stress state of a continuum element in global coordinates is shown in (d), with a depiction of principal 
stresses and principal angle for stiffness assignment shown in (e). 

Within this inner loop, a finite element analysis (FEA) is performed first assuming all elements have 
high stiffness. Based on the results, the stiffnesses of all elements are updated based on the directionality 
of their internal forces. Updating the stiffnesses will change the results of the FEA, so the process must 
be repeated until those changes are very small. In the case of this research, the loop is stopped when the 
change of the compliance of the system between iterations is less than 0.1%. This process follows the 
framework outlined in Gaynor and Guest [14] and Du et al. [22], which has been used in continuum 
topology optimization [23]. Readers are referred to these works for more detail. After this initial loop 
converges, the optimization continues as usual using the found stiffnesses. 

2.2. Variable thickness sheet 
In density-based TO, which is used in this research, continuous design variables (DVs) that can take 
values between 0 and 1 are used to control the placement of material. Usually users seek a “0-1” solution, 
in which intermediate design variable values are penalized, so the optimization specifies areas where 
material should be placed with variable values of 1, and areas where it should be taken away with values 
of 0. However, research has shown that these 0-1 outputs can often produce low-performing structures 
relative to other design methods [21]. Sigmund et al. proposes that, rather forcing 0-1 outputs in TO, it 
can be better to use the Variable Thickness Sheet (VTS) method, in which the thicknesses of the structure 
are controlled directly by continuous variables without penalization of intermediate values. 

This research uses VTS by interpreting design variable values directly as thicknesses [2]. A DV value 
of 1 would be interpreted as a maximum thickness, a value of 0 would mean no material is placed, and 
any values in-between are interpreted as a linear interpolation. Examples of this approach are shown in 
Figure 3. 

 

 
        

  (a) (b) (c) 

Figure 3: For a vertical cantilever loadcase (a), results with volume restrictions of 0.15, 0.3, and 0.5 allowing for 
continuous variable values are shown in (b). The variable sheet interpretations of these results with a cutoff 
density threshold of 0.001 are shown in (c). This figure is based on that of Sigmund et al [21].  

2.3. Moving trusses 
In addition to the use of VTS method, this research also expands on previous work by allowing the nodes 
of truss elements to move during the optimization process. This process is visualized conceptually in 
Figure 4. 
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Figure 4: On left, a truss-continuum hybrid optimization output with static truss nodes. On right, an example of 
how moving the truss nodes might improve the performance of the design, with blue arrows showing possible 
movement paths.   

The most challenging aspect of this added flexibility is ensuring that the stiffness of truss elements is 
transferred properly to the nearby continuum elements. Normally in FEA, element nodes must land 
identically on top of one-another. However, if the location of the truss nodes is controlled by continuous 
DVs, it would be difficult to ensure they land directly on top of the continuum nodes in the system. This 
is illustrated in Figure 5a. To address this, a stiffness spreading method (SSM) is used, similar to that of 
Wei et al. [24] and Zegard and Paulino [20]. In SSM, truss elements distribute their stiffnesses to nearby 
continuum elements within a radius of influence, r. The principal of SSM is illustrated conceptually in 
Fig. 5d. The stiffness of the truss element is distributed as a function of distance to the nearby continuum 
nodes using a smooth differentiable function, shown in Fig 5c. Using this method, truss nodes can move 
continuously throughout the design space while always distributing their stiffnesses to a selection of 
continuum nodes, like the system illustrated in Fig. 5b. 

 

  
(a) (b) 

  
 

 

(c) (d) 
Figure 5: A condition in which truss nodes do not land on top of continuum nodes after being moved by 
continuous DVs is shown in (a). The use of SSM to distribute truss stiffness to nearby continuum nodes within 
defined radius r is shown in (c), with an example of the distribution function shown in (d). In (b), the same 
system as (a) is shown with SSM implemented to allow for the movement of truss nodes with proper stiffness 
distribution to continuum elements.  

3. Results 
With these optimization strategies implemented and assembled, it is crucial to evaluate how performance 
of generated geometries compare to one another. To assess this, 4 geometries are compared that are 
generated using the same boundary conditions and parameters, with different combinations of design 
flexibility. The optimizations use either static or moving truss nodes, and 0-1 or VTS continuum 
elements. The used cantilever load case is visualized in Figure 6. All optimizations use a continuum 
design space of 110x80 elements, with 2 truss bays in the vertical direction and 3 in the horizontal. The 
filter radius is set to 3 in all cases, and the SSM distribution radius is set to 4. The truss nodes are able 
to move 6 elements in any direction, in the cases that allow for movement. The optimizations start with 
30 iterations in which the continuum elements are not modified, so that the trusses can be optimized 
before the material starts to be removed. This is followed by 40 iterations in which truss sizes and 
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continuum elements can be modified. The truss nodes cannot move during the 2nd phase of the 
optimization. The 0-1 designs use a penalization variable value of 3. Heaviside projection is not used on 
any designs. Continuum volume is constrained to 0.4 of the design space, while the truss volume is 
constrained to 0.15. The results are shown in Figure 7. 

 

 
Figure 6: The load case for all designed examples is shown. The blue lines are the truss elements available to the 
optimization, while the gray is where continuum elements can be controlled. A load is applied in the middle of the 
right-most truss elements, while all nodes are fixed along the left-hand side. Truss nodes that can be controlled 
have a yellow square showing the extent to which they can be moved. The red circles show the truss nodes, while 
the white circles show the radius of the SSM distribution. 

 

 Static Nodes Moving Nodes 

0-1 

 
C = 16.3861 

 
C = 15.8203 

VTS 

 
C = 16.1947 

 
C = 15.6129 

Figure 7: A comparison of compliance values are shown for 4 different optimization conditions. The results in the 
top row enforce 0-1 outputs, while below the VTS method is used. On left, truss nodes are static, while truss nodes 
can be moved in the examples on the right. 

It can be seen that the design flexibility of VTS and moving truss nodes afford performance gains over 
the control example with static truss nodes and a 0-1 output enforced. All outputs have lower compliance 
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values, C, compared to the control case. The compliance of the system is reduced by about 5% using the 
same volume of material when both strategies are used, which can lead to meaningful gains in built 
structures. 

As described in section 2.2, the gray regions of the VTS designs would be linearly interpreted as 
thicknesses based on their DV values. The VTS designs could be fabricated with a 2-part symmetric 
mold that could be filled with concrete and released after an initial cure. Because the design variables 
only control thickness throughout the design space, it is guaranteed that there will never be internal 
voids, which eases fabrication. This is process is shown conceptually in Figure 8 with a beam example. 
It should be noted that this fabrication method will not be possible in all building contexts, and may not 
always lead to reduced construction costs, even though less material is being used.  

 
Figure 8: Illustration of a proposed fabrication process for a VTS designed structure. Both pieces of a two-part 
mold could be placed together to be filled with concrete, which would be released after an initial curing period. 

It should be noted that some VTS results would encounter fabrication difficulties following this method. 
For example, areas of the design space are assigned very low DV values may be so thin that they are 
difficult to manufacture, and would not carry load in a real-world physical structure. This phenomenon 
has been observed in other research, such as Giele et al. [25]. Solutions for this problem, such as 
enforcing a minimum thickness on the VTS design, can be implemented in future work. This would 
ensure that physical tests can be performed on built specimen. 

4. Conclusion 
This research uses a hybrid truss-continuum optimization space with force-dependent orthotropy 

to generate low-weight designs for RC members. The nodes of truss elements are controlled by 
continuous DVs to move smoothly throughout the design space, and the VTS method is used to vary the 
thickness at each continuum element. It can be seen that allowing for these added degrees of design 
flexibility leads to significant improvement in the value of the objective function. This research can 
inform future work on RC optimization, particularly on best practices for fabrication and testing of 
experimental structures. 
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