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Abstract

Free-form surfaces are increasingly used in architectural designs for their striking aesthetic appeal.
While they can be assembled from prefabricated simple polygonal panels, this process is typically
challenging and costly due to the need for many different panel shapes. To address this, we present
an innovative design method that can approximate free-form surfaces using a single type of regular (or
near-regular) triangle. The method starts with an initial triangle and gradually ‘grows’ new ones until the
target surface is entirely covered. During the growth process, the method strategically assigns the locally
optimal valence to each vertex to accommodate the surface curvature. Vertex positions are dynamically
updated to keep triangles as equilateral as possible and aligned with the target surface, through an effi-
cient localized optimization process. Tested on multiple numerical examples, the method can solve both
complex organic shapes and architectural surfaces with open boundaries. The resulting mesh features
seamlessly connected, near-regular triangles and smooth patterns with a small number of singularities.
Via best-fit matching, each triangle can be replaced by a standard regular triangle (or the mean shape)
to generate exactly congruent panels with small gaps, potentially enabling realistic manufacturing and
assembly.
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1. Introduction
Free-form surfaces create 3D shapes that possess innovative and elegant appearances. In recent years,
the adoption of free-form surfaces has been rapidly increasing in architectural designs due to the de-
velopment of computer-aided design technologies [1]. These surfaces, however, are inherently complex
due to the double curvature, which often poses great difficulty for real-world construction. To address
this, significant effort has been focused on the problem of architectural rationalization, aiming to make
the construction of complex surfaces feasible and affordable [2, 3].

One major rationalization strategy is to reduce the shape variety of building components, such as beams,
nodes, and panels, to reduce mold customization and facilitate production. Regarding beams, several
methods have been proposed in different contexts, including architectural structures [4, 5, 6] and sphere
tessellations [7, 8]. As for nodes, methods include replacing low-valence nodes with fewer types of
high-valence ones [5, 6, 9], or merging different nodes by similarizing their respective shapes [10, 11].
In terms of panels, several optimization methods have been proposed to reduce the number of different
molds for panel fabrication, without needing the panel shapes to be exactly the same [12, 13]. Other
methods have instead explored approximating free-form surfaces using congruent groups of triangles
[6, 14, 15], quadrilaterals [16], or general n-gons [17]. This study, however, focuses on the extreme
case of approximating free-form surfaces using only one type of near-regular triangle. All panels being
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congruent could significantly benefit fabrication. Triangular panels with regular-like shapes are also
visually pleasing and desirable for architectural applications.

Few studies in architecture have attempted to design free-form surfaces using equivalent regular triangles
[18, 19]. As observed in [18], the use of regular triangles reveals certain relationships between vertex
valence (the number of edges meeting at a vertex) and local surface curvature: vertices with valence 5
(V 5) tend to form convex areas, those with valence 6 (V 6) result in flat or developable surfaces, and
vertices with valence 7 (V 7) lead to concave regions. By manipulating the number and the positions of
singularities (vertices with valence different from 6), it is possible to create elegant architectural surfaces
using equivalent regular triangles [18, 19]. However, existing studies mostly rely on a trial-and-error
approach, which could be inefficient and even impossible for the design of highly complex geometries.
An automatic approach that approximates general free-form surfaces using equivalent regular triangles
remains to be developed.

In computer graphics, triangular remeshing techniques [20] share a similar goal with us, aimed at re-
fining input meshes for various downstream applications. Particularly relevant is a method focusing on
achieving equilateral triangles [21]. Given an input mesh and a target length, this method gradually
splits long edges and collapses short edges to create an isotropic mesh composed of near-equilateral
(i.e., near-regular) triangles. However, the resulting mesh often exhibits numerous singularities with un-
smooth visual patterns, which may not be directly used for architectural applications. One may further
reduce the number of singularities through a series of topological operations [22, 23], yet the resulting
triangles would typically become less uniform. An approach that simultaneously achieves near-regular
triangles and smooth mesh patterns with a small amount of singularities remains missing for architec-
tural applications.

This study presents a novel mesh-growth algorithm for approximating free-form surfaces using a single
type of regular (or near-regular) triangle. Given a target surface, this algorithm gradually appends new
triangles to the front of the existing mesh until the entire surface is covered (see Figure 1). Specifically,
faces are gradually added around a chosen vertex to achieve a locally optimal valence, guided by the
local geometry. Vertex positions are dynamically updated to keep triangles as equilateral as possible and
aligned with the target surface, through an efficient localized optimization process. Specific consider-
ations are included to manage potential self-intersection of the front and ensure proper alignment with
the surface boundaries, as detailed in Section 2. Various numerical examples are presented in Section 3
to demonstrate the effectiveness of our method. The slightly different triangles in the obtained mesh can

Figure 1: Overview of the mesh-growth algorithm. Given a target surface (a), the proposed algorithm
gradually adds new faces to the front of the existing mesh (b), until covering the entire surface (c). Faces
of the mesh may be further replaced by the mean shape, creating a discrete form composed of exactly
congruent faces to enable realistic fabrication (d).
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each be replaced by a standard regular triangle (or the mean shape) to create exactly congruent panels
with small gaps for real construction (see Figure 1(d)). The final conclusions are given in Section 4.

2. Methodology
2.1. Overview

The overall framework of our method is a mesh growth process. The core idea is to gradually grow
new triangles along a target surface while explicitly assigning the optimal valence for each vertex being
processed. Essentially, our algorithm is a special type of advancing-front method, with two novel fea-
tures, local topological operations and localized geometry optimization, specifically tailored for regular
triangles, as further detailed in Sections 2.2 and 2.3, respectively. The general process of the algorithm
is summarized below:

(1) Input a target surface, a target length for edges (denoted by l⋆), and an initial triangle as the growth
starting point.

(2) Pick up one vertex at the front and perform corresponding topological operations depending on
the local geometry. If there is no valid vertex, stop the iteration.

(3) Perform localized geometry optimization to update vertex positions towards the specified geomet-
ric properties.

(4) Return to step 2.

2.2. Local topological operation

For each iteration, we first need to find a position (i.e., a vertex) for processing. Inspired by the work
of Zimmer et al. [9], we select the vertex with the largest valence at the front. This is to prioritize the
treatment of concave region, which could help improve the robustness of the algorithm. Moreover, if
the selected vertex is close enough to the boundary of the target (open) surface (with the closest distance
smaller than 0.5l⋆ for the default setting), we omit it and search for the next.

At the selected vertex, we grow new triangles around it until reaching the locally optimal valence. The
main goal here is to snap the valence of the current vertex to the closest integer of the sum of the face
angles at that vertex divided by 60◦. This can be achieved through three topological operations, including
merge, connect, and add based on the local geometry, as shown in Figure 2. Specifically, if the remaining
angle θ ≤ 30◦, we merge the two end points. If 30◦ < θ ≤ 90◦, we connect the points with an edge and
fill in a new triangle. If θ > 90◦, we add a new regular triangle connected to one adjacent edge of this

θ ≤ 30° 30° < θ  ≤ 90° 90° < θ 

θ

Merge Connect Add

Figure 2: Local topological operations. The selected vertex for processing is denoted in green, and the
involved vertices in each operation (for the initialization of the subsequent optimization) are denoted in
black.
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vertex, orthogonal to the vertex normal direction. In addition, we try to avoid the appearance of vertices
with V < 5 or V > 7, due to their undesired visual effects. Thus, when V < 5, we simply add, and if
V > 7, we merge. In addition, to manage the potential front meeting, if two non-adjacent vertices at the
front are close enough to each other (distance smaller than 0.5l⋆), these two vertices will first be merged
to avoid mesh overlapping.

2.3. Localized geometry optimization

After each topological operation, an optimization process is followed to update vertex positions for keep-
ing triangles as equilateral as possible and aligned with the target surface. The corresponding objective
function is given in Equation (1), where Ei denotes each edge length, and V ⋆ represents the closest point
for each vertex Vi on the target surface. Note that for vertices positioned within a distance less than 0.5l⋆

from the target surface’s boundary or corners, their designated target points are specifically chosen from
these boundary or corner to maintain the geometric features.

F =
∑

(Ei − l⋆)2 +
∑

(Vi − V ⋆)2 (1)

Figure 3: Test results of complex organic shapes with intricate details.

During the mesh growth process, as the mesh is increasingly expanding, directly optimizing the full mesh
at each iteration would drag the whole algorithm highly inefficient. Since the error is mostly localized
at the vertices involved in the topological operation (see Figure 2), only updating a small region near
these vertices would be adequate. In this regard, inspired by Bommes et al. [24], we develop a localized
optimization strategy, as detailed below:

(1) Initialization. Input a list of the vertices initially influenced by the topological operations (see
Figure 2).

(2) Local optimization. Perform local optimization only on the vertices involved in the list.

(3) List update. Calculate the displacement of each vertex in the list. If the displacement is greater
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than a certain threshold (e.g., 1e-3l⋆ by default), add the neighbors of this vertex to the list; other-
wise, remove this vertex from the list.

(4) Convergence check. If the list is empty, end the iteration; otherwise, return to step 2.

3. Results and discussion
Various geometries are tested using our method, as illustrated in Figures 3 and 4. The results in Figure
3 demonstrate that our method can handle highly complex organic shapes with intricate details. Yet, to
capture these local features, a reasonably small target length is required. Meanwhile, Figure 4 highlights
the capacity of our method in addressing open free-form architectural surfaces while preserving the
features of boundaries and corners. Nevertheless, triangles close to boundaries are typically less regular
due to the imposed additional constraints. Remarkably, all numerical tests are finished within a few
seconds, attributed to the localized nature of the geometry optimization. The resulting meshes feature
near-regular triangles and smooth patterns with a small number of singularities, owing to the proper
selection of the vertex valence. Yet, chains of singularities may appear in areas where fronts meet,
potentially creating locally unsmooth patterns.

Figure 4: Test results of architectural surfaces with open boundaries.

In the resulting meshes, all faces are near-regular, seamlessly connected, but slightly differ in their
shapes. For fabrication, each triangle may be replaced by either the mean shape, or a standard regular
triangle, via best-fit mapping [17, 25], as shown in Figure 5. The first case creates less errors, hence more
uniform gaps, while the latter case would allow the use of the same regular triangles for the fabrication
of multiple different structures.

Note that within our algorithm, the final error is fixed based on the given inputs. Consequently, our
method does not guarantee to satisfy any given error threshold. For projects where smaller errors are
required, further processing would be necessary, such as increasing the group number [17]. Since the
meshes created using our algorithm already contain faces with similar shapes, they could serve as good
initialization, potentially lowering the final group number of different faces needed to meet the given
error threshold.
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Figure 5: With the obtained mesh (Left), each face can be replaced by (Middle) a regular triangle or
(Right) the mean shape, creating exactly congruent faces with small gaps to enable realistic fabrication
and assembly.

4. Conclusion
This study presents a mesh-growth method to approximate free-from surfaces using a single type of
regular (or near-regular) triangle. Specifically, we propose a novel strategy of explicitly assigning the
locally optimal valence for each vertex during the growth process via defined topological operations.
Also, we introduce an efficient localized optimization strategy to dynamically update vertex positions to
keep triangles as equilateral as possible and aligned with the target surface. Various numerical examples
are presented to demonstrate the effectiveness of the method, including complex organic shapes and
architectural surfaces with open boundaries. All cases are completed within a few seconds, and the
generated meshes feature near-regular triangles and smooth patterns with a small number of singularities.
By replacing each face with a standard regular triangle (or the mean shape), we can create exactly
congruent panels with small gaps that may enable realistic fabrication and assembly. For future research,
considering the alignment with an underlying vector field would be a promising approach to further
enhance the outcome.
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