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Abstract

Membrane theory assumes equilibrium through in-plane membrane forces, i.e. membrane shells re-
sist applied loads without internal moments. Form-finding of membrane shell structures requires the
solution of a partial differential equations (PDE) expressing static equilibrium in terms of stress and
shape functions. We provide a systematic overview of existing approaches to the form-finding prob-
lem of membrane shells. This is followed by a detailed review of the Stress Density Method (SDM):
a computationally efficient, and widely used method seeking shapes of equilibrium under prescribed
2nd Piola-Kirchoff stress field. Numerical algorithms typically consider the weak form of the equations
or physical discretizations of the membrane surface, however we present the explicit, strong form of
the governing equations. This approach allows us to find conditions of well-posedness, which guar-
antees uniqueness of the solution and continuous dependence on problem parameters. It is found that
well-posedness depends on the character of the prescribed stress field. Some difficulties arising from
attempts to solve ill-posed problems are illustrated.

Keywords: membrane structures, form finding, stress density method, partial differential equations, well-posedness,
Pucher’s equations.

1. Introduction
1.1. Structural from-finding

Membrane shells are thin surface structures, which balance external loads of arbitrary direction through
in-plane membrane forces. They offer the possibility of visually attractive, and material-efficient struc-
tural solutions. The possibility of the membrane state of a shell depends on the geometry of its mid-
surface, the type of load and its intensity, as well as on the thickness and the modulus of elasticity of the
material i.e. the ability of deformation of the shell [1]. The curvature of the surface plays a critical role
in equilibrium, hence the curvatures of membrane shells, and thus their global shapes need to be chosen
carefully and in accordance with their loads.

Form-finding of membrane shells (also called initial equilibrium problem by some authors) is an essen-
tial part of the conceptual design of membrane shells, and it has a long history. Early approaches of
R. Hooke, G. Poleni, and later A. Gaudi, H. Isler, and others used hanging models to find moment-free
forms of structures. These models were made of cable elements or continuous surfaces (textile or soap
film) representing arches, vaults, cable nets or membrane shells [2].

Computational form-finding methods can be viewed as virtual representations of physical models inves-
tigated with the aid of numerical solvers. Numerical methods take boundary conditions (support types
and locations), topology, external loads, and some additional parameters (specific to the method used)
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as input. The solution of the problem of form-finding is a tuple of a structural shape and a stress field,
which together ensure equilibrium of the structure under its load. Form-finding is followed by tradi-
tional steps of structural analysis. Many variants of the design process exist: for example, the load often
depends on structural shape, in which case it becomes part of the solution; or form finding and structural
analysis can be combined into an iterative process of optimal design.

1.2. Classification of computational methods

An important theoretical classification is based on the linear or nonlinear character of the equations to
be solved. There are highly efficient and reliable computational algorithms to solve linear differential
equations, or large systems of linear algebraic equations, and existence and uniqueness of the solution
is often guaranteed [3]. Accordingly, linear form finding methods such as the Force Density and Stress
Density Methods [4, 5] stand out for their low computational costs. In contrast, nonlinear problems
needs refined and computationally expensive methods, and often fail to identify a solution.

Another well-known classification of computational form finding methods focuses on the solution strat-
egy [2] with three important types. Structures with very low bending stiffness tend to deform under
external loads into nearly funicular shapes. This observation allows one to use adapted versions of non-
linear structural analysis with large displacements using Finite Element Method for form finding [6, 7].
The outlined approach makes use of traditional tools available for structural analysis, but it is computa-
tionally often inefficient. In contrast, geometric stiffness methods attempt to find shapes consistent with
funicular equilibrium without relying on material-dependent physically relevant stiffness parameters.
Apparently, this class includes some highly efficient algorithms, which will be discussed in more detail
in Section 2. Finally, dynamic relaxation methods solve the dynamic equation of a vibrating system,
composed of the original model extended with actual or fictitious masses, and damping, see e.g. [8, 9].
Here the goal of the analysis is to identify a shape of stable equilibrium as the limit shape of damped dy-
namics. Dynamic relaxation methods can also be interpreted as iterative solution schemes of nonlinear
structural analysis, or geometric stiffness methods.

Finally, a third important classification is based on distinction between continuous or discrete models.
Discrete models include hinged bar systems, which is a natural model of cables, cable nets or vaults
subject to concentrated loads, and the corresponding problems can be formulated as algebraic equations
[10]. In contrast, form-finding of continuous models of membrane shells or funicular surface structures
leads to partial differential equations, which must be discretized in order to be tackled by numerical
solvers. Some forms of discretization are equivalent to a discrete physical hinged bar systems. For
example equilibrium equations discretized using the finite difference method on an orthogonal plan
grid, assuming zero shear stress has a possible physical interpretation as the equilibrium equations of a
hinged bar system above plan orthogonal grid, loaded at the hinge points by a load equivalent to the load
of the shell [11],[12]. In the literature of form-findig, continuous problems are often directly replaced by
discrete physical models, which is reasonable from the point of view of numerical computation, However
this transformation may hide important information about the problem, such as well-posedness, which
is in the focus of the present work. Well-posedness is a basic concept of the theory of partial differential
equations, which depends on the form of the equation as well as the types of boundary conditions. As we
point out, well-posedness is crucial to the relevance of the solution found using computational methods
to the original problem. However exact conditions of well-posedness are not available but in a few
simple cases.
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1.3. Structure of the paper

The rest of the paper is organized as follows: Section 2 is devoted to a detailed overview of geometric
stiffness methods, among which the stress density method (SDM) stands out for its linearity and com-
putational efficiency. In Section 3, we present the barely used strong form of the SDM, which allows us
to investigate conditions of well-posedness and to highlight the importance of this property in structural
form-finding (Section 4). The paper is closed by a discussion of open questions (Section 5).

2. An overview of geometric stiffness methods for membrane shells
Geometric stiffness methods aim to find a shape satisfying conditions of static equilibrium. The statics
approach means that deformations and stiffness of the structure are not taken into consideration. In most
cases, boundary types, structural topology and loads (or some relation between shape and loads) are
prescribed, and a large set of possible solutions exists. Different form-finding methods specify different
additional parameters in order to arrive to a unique solution. Such parameters may include various
features of the shape or the stress field in the structure. In what follows we outline three families of
methods along with their main strengths.

2.1. Form-finding under prescribed plan view

In architectural design, a common strategy of preliminary design is to prescribe orthogonal projection
of the shell to a horizontal plane (i.e. plan view) along with the arrangement of supports.

Some of the earliest geometric stiffness methods [11] prescribed in a first step the projection of the
shape into horizontal plane as well as the projection of membrane stresses or bar forces into the same
plane. Continuous problems were discretized. Then, the equilibrium of horizontal force components for
a prescribed projected bar configuration was investigated. For free edges, the projected bar configuration
geometry often needed modification to satisfy the static boundary conditions. The height of the struc-
ture was found in a second step by numerically solving the equations of equilibrium (which is a linear
problem). These works focused on a limited class of cases, where a matching triplet of plan view form,
boundary conditions, and projected stress distribution could be found analytically. For discrete models,
this approach was later reformulated and became known as Thrust Network Analysis (TNA) [13].

More recent work by Chiang et. al. [14] on continuous problems extends these methods in order to deal
with situations where a matching triplet of projected shape, stress, and boundary conditions cannot be
found in closed form. Chiang’s method prescribes plan view and boundary conditions. Starting from an
initial guess of a matching stress distribution, an intricate iteration process is used to solve the nonlinear
PDE, whose solution is the corresponding projected stress distribution. Then the elevation, and 3D
stress state are found as before. An important weakness of this approach is the possible divergence of
the iteration process, which stems from its nonlinearity.

2.2. Form-finding under prescribed Cauchy stress

The structural designer often aims to control the Cauchy stress distribution inside the shell in order to
construct a structural solution with optimized strength everywhere. Under prescribed Cauchy stress, the
equilibrium equations become nonlinear PDEs. Iterative solution procedures were proposed by [15][16]
in order to achieve generate minimal surfaces characterized by uniform Cauchy stress with prescribed
boundary conditions. A well-known weakness of this method is the non-existence of solutions for some
boundary conditions.
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2.3. Form-finding with low computational cost

The Force Density Method (FDM) [4, 17] was initially developed for discrete cable networks. The
method seeks a geometry providing equilibrium under prescribed ratio of normal force to length in each
bar. The equilibrium equations are linear in the unknown joint coordinates, which allows computation-
ally efficient solution without iteration. In the case of free boundary, the method automatically provides
the corresponding edge geometry. In turn, the method does not allow direct control over plan view form
or Cauchy stresses.

The Stress Density Method (SDM) is an analogous procedure for continuous models (preserving linear-
ity) first proposed by Haber and Abel [18]. This method takes as input a triplet of a reference config-
uration, boundary conditions, and a proposed 2nd Piola-Kirchoff (2PK) stress field over the reference
configuration. The solution of the problem is a shape of equilibrium such that constraints are obeyed,
and 2PK stresses match the prescribed distributions. The weak (variational) form of the PDE under-
lying the SDM was derived and solved using Finite Element Methods by [18, 15]. Other works [19,
20, 21] focus on physical discretizations of the continuous membrane surface and the corresponding
algebraic equations. It appears to us that the strong (explicit) PDE form of the SDM equations has not
been presented and investigated in the literature. In the current paper, we will derive the corresponding
PDE from equilibrium equations of an infinitesimal surface element, which enables us to study possible
ill-posedness of the problem and its practial consequences.

3. Explicit form of the stress density method
A model of the SDM (Fig. 1) has four crucial prescribed components:

• a bounded domain D of the plane parametrized by two scalars (p, s) (reference configuration)

• a set of kinematic constraints (supports) and static boundary conditions (e.g. specification of free
edges without external support).

• a vector-valued external load g(p, s) over D (which is by default a force distributed on a surface
but it may include linearly distributed or concentrated forces as well).

• three scalar functions ξ(p, s), τ(p, s), η(p, s) over D representing components of the prescribed
2PK stress resultant tensor with respect to the local coordinate system of the reference configura-
tion:

Q(p, s) =

[
ξ(p, s) τ(p, s)

τ(p, s) η(p, s)

]
The aim of the SDM is to find an unknown shape function r(p, s) : D → R3, as well as three scalar
functions representing the (Cauchy) stress resultants.

Let (x, y, z), and (gx, gy, gz) denote components of r and g, respectively. By definition of 2PK stress,
the stress resultants acting on an infinitesimal surface element in the equilibrium configuration can be
obtained by transforming the force vectors corresponding to ξ, η, τ as ρ → Jrρ where matrix Jr =

[rp rs] is the Jacobian of the form function. The free body diagram of the surface element is depicted in
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Figure 1: SDM model of a membrane shell with reference configuration (A), equilibrium shape (B), and
free body diagram of an infinitesimal piececorresponding to the black quadrangle in panel B (C). The
arrows in panel C represent resultants of forces distributed along the edges of the surface element.

Fig. 1C, and uses the following notation

X = ξ(p, s)rp(p, s)ds,X
′ = ξ(p+ dp, s)rp(p+ dp, s)ds (1)

E = η(p, s)rs(p, s)dp,E
′ = η(p, s+ ds)rs(p, s+ ds)dp (2)

T1 = τ(p, s)rs(p, s)ds, T
′
1 = τ(p+ dp, s)rs(p+ dp, s)ds (3)

T2 = τ(p, s)rp(p, s)dp, T
′
2 = τ(p, s+ ds)rp(p, s+ ds)dp (4)

Note that the shape of the surface element is a paralellogram embedded in 3D space, and the forces
X,E, T1, T2 are parallel to its edges. The equilibrium of the surface element is expressed as

∂

∂p
[ξ
∂r

∂p
] +

∂

∂s
[η
∂r

∂s
] +

∂

∂s
[τ
∂r

∂p
] +

∂

∂p
[τ
∂r

∂s
] + g = 0 (5)

We use the product rule, and introduce a shorthand notation for partial derivatives in the form of lower
indices to obtain:

ξprp + ξrpp + ηsrs + ηrss + τprs + τsrp + 2τrps + g = 0 (6)

This equation is linear, furthermore, it can be decomposed to 3 independent PDEs for (x, y, z). The
three equations are identical except for the differences in load components and boundary conditions.
For example, the z(p, s) coordinate of the surface is the solution of

ξpzp + ξzpp + ηszs + ηzss + τpzs + τszp + 2τzps + gz = 0. (7)

4. Well-posedness of PDE problems and form-finding
The explicit form given in Equation 7 helps us to apply the theory of PDEs to this problem. Linear, sec-
ond order partial differential equations can be classified according to their discriminants, which allows
to determine their transformation into a canonical form at any given point (p0, s0) [22]. For (7), the
discriminant is

L = τ(p0, s0)
2 − ξ(p0, s0)η(p0, s0), (8)

which depends on the prescribed 2PK stress tensor. If L is equal to zero, Eq. (7) is parabolic; if
L < 0 then it is elliptic and if L > 0 then it is hyperbolic. At this point, it is worth noting that elliptic
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equations correspond to prescribed principal Cauchy stresses with identical signs (i.e. shells under pure
compression or pure tension), whereas hyperbolic equations correspond to prescribed principal stresses
with opposite sign (shell subject to compression in one direction but tension in the orthogonal direction).

ξ, η, and τ are often prescribed as constant values, meaning that the problem keeps the same canonical
classification across the entire domain. In the elliptic case, constant stresses transform (7) to Laplace’s
equation for unloaded shells (gz = 0) or Poisson’s equation for the loaded case (gz ̸= 0). In the
hyperbolic case, Eq. 7 with constant coefficients is the standard Wave equation.

The boundary conditions of (7) depend on how the boundaries are supported. Fixed supports at the
boundaries correspond to prescribed position coordinates, i.e. standard Dirichlet boundary condition in
the nomenclature of PDE theory. Free membrane edges imply prescribed (vanishing) forces across the
boundaries, which can be expressed for an edge with normal vector n in the reference configuration as
JrQn = 0, where Jr is the Jacobian of the shape function r. This boundary condition is closely related
to the standard Neumann boundary condition Jrn = 0 of PDE theory, i.e. a prescribed directional
derivative of the unknown function normal to the boundary. For some values of Q and n (including
the two examples presented below), the boundary condition of a free boundary is identical to Neumann
boundary condition.

Together, the PDE and its boundary conditions determine a crucial property of the problem: its well-
posedness. Well-posedness means [23] that:

• Existence and uniqueness: there is exactly one solution z(p, s) which satisfies the PDE and all
boundary conditions.

• Stability: the solution undergoes small changes in response to small changes of the PDE or its
boundary conditions .

Some conditions of well-posedness are known for linear PDEs of order 2 with standrd types of bound-
ary conditions. A boundary value problem (BVP) with one boundary condition (either Dirichlet or
Neumann) along all boundaries of a closed domain is well-posed if the equation is elliptic in all of its
points [24, 25], and ill-posed for a uniformly hyperbolic case [24, 26]. These mathematical results are
applicable to structural problems, in which every point along the boundary of D is designated as free or
fixed, with Dirichlet or Neumann boundary condition at all of those points.

As a simple example of a well-posed problem, consider a shell with a unit square 0 ≤ p ≤ 1 and 0 ≤ s ≤
1 as reference configuration. Assume that all points of the square’s edges are fixed at (x, y, z) = (p, s, 0),
i.e. in this case the reference configuration is identical in shape and size to the prescribed arrangement
of the supports. The shell is subject to a constant distributed load g(p, s) = (0,−2,−5) applied over
the whole shell area. Besides, constant 2PK stress {ξ, η, τ} = {−1,−1, 0} is prescribed, thus the
discriminant L of eq. (7) and of the analogous equations for x and y are negative. These elliptic BVPs
can be rewritten as:

xpp + xss = 0; x(0, s) = 0, x(1, s) = 1, x(p, 0) = p, x(p, 1) = p (9)

ypp + yss − 2 = 0; y(0, s) = s, y(1, s) = s, y(p, 0) = 0, y(p, 1) = 1 (10)

zpp + zss − 5 = 0; z(0, s) = 0, z(1, s) = 0, z(p, 0) = 0, z(p, 1) = 0 (11)

We generated the solutions of all 3 boundary value problems by using a numerical BVP solver solvepde
using Finite Element Method, available through the Partial Differential Equation Toolbox of the MatLab
software package. The shell geometry encoded by the solutions is shown in Figure 2A. A modified
version of the problem in which two boundary edges parallel to the p axis are prescribed to be free can
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be formulated as

xpp + xss = 0; x(p, 0) = p, x(p, 1) = p; xs(0, s) = xs(1, s) = 0 (12)

ypp + yss − 2 = 0; y(p, 0) = 0, z(p, 1) = 1; ys(0, s) = ys(1, s) = 0 (13)

zpp + zss − 5 = 0; z(p, 0) = 0, z(p, 1) = 0; zs(0, s) = 0; zs(1, s) = 0. (14)

These equations are again well-posed, elliptic BVPs. The resulting geometry is shown in Figure 2B.
As a relatively fine mesh was used by the solver, both solutions are reasonable approximations of the
smooth solution of the original PDEs. Hence, the form-finding problem has been solved successfully.

Figure 2: Examples of numerically obtained solutions for elliptic 2PK stress fields with Dirichlet bound-
ary conditions (A) and mixed Dirichlet and Neumann boundary conditions (B) both yielding well-posed
problems.

Consider now modified versions of the previous examples in which the prescribed stress values are
{ξ, η, τ} = [1,−1, 0]. Then the discriminant (8) is positive,i.e. (7) and the analogous equations for
x and y are hyperbolic. Hence this problem is ill-posed. Numerical solutions generated by the same
numerical BVP solver are illustrated by Figure 3. What we see now is irregular geometry, which ex-
tends far beyond the supports, and is not a viable candidate for the shape of a membrane shell. This
example illustrates an important attribute of ill-posed problems: extreme sensitivity to small changes in
the equations. As discretization schemes can be viewed as perturbations of the continuous problem to
be solved, the solution of the discretized problem cannot be considered a reasonable approximation of
the exact solution. Interestingly, the example that was presented here is a simple wave equation, which
probably has no solution or non-unique solution depending on the prescribed loads [27].

It is important to emphasize that form finding with other types of boundary conditions is also possi-
ble, and may result in different conditions of well-posedness. For example, Cauchy boundary condition
means that 0,1, or 2 boundary conditions are prescribed at appropriately chosen segments of the bound-
ary (details omitted), which means that we have some boundaries with simultaneous conditions for
positions and reaction forces, but no specification at all at other segments of the boundary. This kind of
boundary condition makes uniformly hyperbolic problems well-posed, but elliptic ones ill-posed [28].

5. Discussion
Within the wide range of computational form-finding methods, material-independent Geometric Stiff-
ness methods are especially popular. Inside this category, one can distinguish between numerous meth-
ods, which address various needs of designers. Taking into account that the structural form and its
internal stresses are strongly related, the designer can choose two basic alternatives to find shapes in
static equilibrium: one choice is to have direct control over the shape (e.g. plan view) but not over the
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Figure 3: Examples of numerically obtained solutions for hyperbolic 2PK stress fields with Dirichlet
boundary conditions (A) and mixed Dirichlet and Neumann boundary conditions (B), both yielding ill-
posed problems.

Cauchy stress tensor. Alternatively, one can choose to prescribe external loads and a Cauchy stress along
with boundary conditions at the price of loosing direct control over shape.

Nevertheless, there is an intermediate approach, which is important due to its low computational cost.
The key idea of these methods is to generate linear equations, as linear approaches stand out for their
computational efficiency compared to non-linear methods. In this case the shape is found under a pre-
scribed boundary conditions, external loads and the ratio of normal force to length for discrete problems
(Force Density Method), or a 2PK stress tensor over a reference configuration (Stress Density method).
There is no direct control over the shape or the Cauchy stress.

As the Force Density Method uses sets of linear equilibrium equations, the funicular shape can be found
using simple algebraic operations. Similarly, for the Stress Density Method, discretization required by
numerical solvers yields linear algebraic equations. However studying the original continuous problem
reveals important aspects of this numerical solution, in particular the well-posedness of the problem,
which directly impacts the relevance of the discrete solution. This work focused on the Stress Density
method, for which some conditions of well-posedness are available in the mathematical literature. Nev-
ertheless, other form finding methods face similar limitations as the continuous problem is formulated
using partial differential equations.

Well-posedness depends on the PDE as well as on the boundary conditions. Regarding the Stress Density
method, conditions of well-posedness are established for completely elliptic or completely hyperbolic
2PK stress fields and special types of boundary conditions. However, in other cases, the lack of an
underlying mathematical theory makes challenging to study the significance of discrete solutions.
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Horwood, 1984.

[11] J. Pelikan, “Membrane structures,” in Proceedings of the Second Symposium on Concrete Shell
Roof Construction, Oslo, Teknisk Ubekland, Oslo, 1958, pp. 229–231.

[12] J. Pelikan, “Form-determination of braced domes,” in ed. R.M. Davies: Space Structures: The
International Conference on Space Structures, Surrey, Blakwell Scientific Publication, Oxford,
1967, pp. 160–164.

[13] P. Block and J. Ochsendorf, “Thrust network analysis: A new methodology for three-dimensional
equilibrium,” Journal of the International Association for shell and spatial structures, vol. 48,
no. 3, pp. 167–173, 2007.

[14] Y.-C. Chiang and A. Borgart, “A form-finding method for membrane shells with radial basis
functions,” Engineering Structures, vol. 251, p. 113 514, 2022.

[15] K.-U. Bletzinger and E. Ramm, “A general finite element approach to the form finding of tensile
structures by the updated reference strategy,” International Journal of Space Structures, vol. 14,
no. 2, pp. 131–145, 1999.
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[24] J. Hadamard, “Sur les problèmes aux dérivées partielles et leur signification physique,” Princeton
university bulletin, pp. 49–52, 1902.

[25] B. E. Kanguzhin and A. Aniyarov, “Well-posed problems for the laplace operator in a punctured
disk,” Mathematical Notes, vol. 89, pp. 819–829, 2011.

[26] D. W. Fox and C. Pucci, “The Dirichlet problem for the wave equation,” Annali di Matematica
pura ed applicata, vol. 46, no. 1, pp. 155–182, 1958.

[27] D. Bourgin and R. Duffin, “The Dirichlet problem for the vibrating string equation,” Bulletin of
the American Mathematical Society, vol. 45, no. 12, pp. 851–858, 1939.

[28] A. N. Tikhonov and V. Arsenin, Solutions of ill-posed problems. V. H. Winston and Sons, 1977.

10


	1. Introduction
	1.1. Structural from-finding
	1.2. Classification of computational methods
	1.3. Structure of the paper

	2. An overview of geometric stiffness methods for membrane shells
	2.1. Form-finding under prescribed plan view
	2.2. Form-finding under prescribed Cauchy stress
	2.3. Form-finding with low computational cost

	3. Explicit form of the stress density method
	4. Well-posedness of PDE problems and form-finding
	5. Discussion

