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Abstract 
Biologically inspired techniques have by now entered the mainstream of the architectural design process 
[1]. An example is the genetic algorithm (GA), inspired by Darwinian evolution. Genetic algorithms in 
the AEC field can optimize a wide variety of performative solutions, including minimizing structural 
mass. GAs assume one-gene-to-one-trait [2] and thus can operate on scalar parameters. However, due 
to this assumption, the powerful combinatory nature of genetic assemblies is lost. Therefore, GAs are 
limited in what they can model [3]. Here we present an enhanced version of the GA, called eNEAT 
(Enhanced Neuroevolution of Augmented Topologies) [4] which is based on neural networks and 
machine learning. By evolving networks rather than simple scalar parameters, eNEAT has the capacity 
to model combinations of genes, thereby simulating more closely the way DNA regulates the 
construction of natural organisms. As applied to architecture, this allows for complexity and hierarchical 
morphology, responsive to parameters that are internal to the system itself and external to the 
environment [5]. The non-linear aspect of eNEAT allows for the manifold attributes of the built form to 
be developed concurrently in a unified phase, rather than via the conventional sequential architectural 
design process. By simultaneously considering previously independent parameters, architectural 
responses to these forces become dependent upon each other and may influence one another directly. 
Along with internal requirements, in combination with advanced environmental modeling tools [6], 
eNEAT provides a powerful platform for considering epigenetic effects, the influence of environmental 
factors. The far-reaching conclusion of this project is the potential of developing a computational 
protocol that is capable of negotiating multiple types of independent information in the designing of the 
architectural object. 

Keywords: architectural design, hierarchical morphology, evolutionary development, genetic algorithm, neuroevolution 

1. Introduction 
While commenting on the current state of computational architecture, architect George Legendre 
remarks in his Book of Surfaces: “Parametric relationships are not parts (...) Thus a form shaped by 
parametric modulation has no discrete limb to speak of... you cannot chop it into pieces, nor indulge in 
the separate application of permutation, substitution, and scaling of parts.” [7] This is due to the 
reductionist nature of the GA which is based on the outmoded biological theory, namely one-gene-to-
one-trait. [8] A truly evolutionary model would overcome this limitation, and instead support a 
hierarchical morphology. It would navigate a space of design possibilities vastly exceeding what has 
previously been available in architecture.  
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The model of computational evolution of architecture, as proposed in this article, offers such a 
possibility. It is modeled after the mechanism of evolutionary development (evo-devo). Evo-devo has 
revealed that a common set of genes related to the regulation of the growth and development of 
organisms is shared across very distantly related organisms. Furthermore, “in the natural world, modular 
design is the key to diversity. Nature never starts from scratch. Rather, it builds up complexity from a low-level 
toolbox of components.” [9] Recent discoveries in biology have uncovered multi-layered networks that 
regulate organic form generation - gene regulatory networks, protein interaction networks, cell-signaling 
networks, metabolic networks, and ecological networks [10]. The emergence of the field known as 
epigenetics is also a critical factor in influencing architectural form. Epigenetics describes the 
relationship between the built form as being environmentally responsive in a complex feedback loop. It 
integrates gravity, load, solar radiation, wind, natural light, thermal loading, ventilation, etc. [11]. 

The algorithm proposed in this paper augments the standard GA by replacing populations of simple 
scalar data structures (“chromosomes”) with populations of networks (genomes). The system remains 
reflective of the neo-Darwinist concepts of mutation, crossover, and natural selection, but it becomes 
capable of modeling combinations of genes allowing for vast possibilities of form, as found in nature.  

This system offers the possibility to evolve rich, novel morphologies. Due to its inherent non-linearity, 
the framework integrates multifunctional performance. It becomes possible to model manifold 
architectural systems concurrently, rather than via the conventional sequential process of designing 
components independently. 

This article first describes a few selected historical studies in the field of genetics as related to 
architecture. It then describes the current state-of-the-art in terms of the application of GAs and advanced 
geometric modeling. It further details eNEAT, the augmented version of the GA, and its protocol. A first 
experiment is presented investigating the evolution of structural trusses according to mutation, 
crossover, and selection. Preliminary results of emergent truss topologies are evaluated. 

2. A selected view of evolutionary architecture 
Beginning with English naturalist Charles 
Darwin and his theory of evolution, the 
explanation for species growth and 
development is accounted for. Essentially 
the survival of a species is determined by 
adaptability [12]. Scottish biologist and 
mathematician D’Arcy Thomson (figure 1) 
described evolutionary change as the 
negotiation of pressure, due to both internal 
forces and changing external environmental 
conditions, as is the case in architecture. 

Subsequent to these historical scientific 
milestones, five successive waves of evolutionary architecture may be observed. The first wave at the 
turn of the 19th century, organic architecture, was influenced by the idea of an inner logic that tended to 
bring unity to a design. In the second wave, during the post-war period, architecture was inspired by 
theories of cybernetics and feedback loops. The third wave, beginning in the 1980s, saw the early 
integration of computer technologies such as animation and genetic algorithms. Beginning also in the 
mid-1980s, the development of the Bézier spline curve and NURB technology ushered in the fourth wave, 
now known as parametricism [10].  In parallel to the fourth wave, the fifth wave of evolutionary architecture 
may have been heralded by architect John Frazer who stated that “DNA does not describe the phenotype but 
encompasses instructions, the genotype, that describe the process of building the phenotype.” [13]  

 

 

 

Figure 1. Diagrams of Force which have influenced 
morphological evolutionary changes (Thompson 1917) 
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2.1 The Genetic Algorithm 

The GA, invented in 1975 by computer scientist John Holland, was 
developed to solve problems by simulating the evolutionary process of 
natural selection.  In nature, DNA is a non-linear network of 
interconnected genes whose combinations regulate the outward traits 
of organisms. The GA is a reductive version of DNA based on the 
outmoded theory of one-gene-to-one trait. Its original design was as a 
classifier system. Functioning as a supervised machine-learning 
system, it referenced a database that contained a large array of 
attributes, and categories each of which contained a subset of the 
attributes. An object was classified based on how closely its attributes 
matched one of the categories. As a linear system applied to 
architecture, the GA models a direct mapping of parameters to building 
attributes. It can adapt and optimize but to a very limited extent 
because its underlying model is non-hierarchical.  The space of 
possible solutions generated by GAs is constrained to basic variations 
of the original form. The space of possible solutions generated by GAs 
is constrained to basic variations of the original form. Architect John 
Frazer was a pioneer in the use of the GA to optimize form. As an 
example, in his book, Evolutionary Architecture, he investigated the 
evolution of classical proportions of Tuscan columns (figure 2). 

2.2 Geometric form 

The C-chair, developed by the authors in 2008, was an early 
experiment in applying evolutionary development protocol to 
architectural design and in the formation of complex geometries 
(figure 3). [14] The elements of the chair consisted of networked nodes 
and edges. It was composed of two topologies - a surface of concentric 
circular forms and a tree-like support. As in evo-devo, both topologies 
shared common attributes, therefore the interface formed a series of 
connecting points. Rather than a GA, this model incorporated a K-
Means clustering algorithm. The model was purely formal; it did not 
consider materiality or structural characteristics. It raised an important 
question. Rather than mathematical precision and complex formulaic 
geometries, can the organizing principles of nature be applied to the 
development and evolution of architectural forms? 
 

2.3 Hierarchical Form 

Moving from a series of connections of two distinct topologies to a recursive hierarchical morphology, 
the series below (Figure 4) illustrates a sequence of increasing morphological complexity. The series 
begins with two basic forms, a ‘cap’ and a ‘tube’ (figure 4a). They are simple forms which can be 
characterized by parametric formulae. As such, their regulating parameters can be manipulated in a 
linear manner by a GA – stretching, growing, shrinking, etc. Next in the series is a recursive hierarchy 
of the ‘cap’ form (figure 4b), with caps connected to other caps, in a fractal-like manner. The various 
dimensions of the caps are parametric, and the connection points are specified algorithmically. This 
recursive hierarchical form requires a non-linear model which is not supported by the GA. The third 
form in the series illustrates a further level of complexity by combining multiple subcomponents in a 
recursive hierarchical manner (figure 4c). 

Genetic algorithms optimize forms resizing and reshaping self-same components. [12] However, it is not 
possible to create independent forms which can interact with each other. There is no possibility of recursive 
hierarchical modules. [3] To model hierarchical morphologies, an improvement of the GA is required.  

Figure 3. C-chair, an experiment 
in evo-devo inspired geometry 

(Kalnitz, Sprecher 2008) 

Figure 2. Evolving proportion in 
Tuscan columns using 

genetic algorithms 
(Frazer 1995) 
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3. Introducing NEAT 

The NEAT algorithm (NeuroEvolution of Augmenting Topologies), was originally developed in 2002 
by computer scientists K. Stanley and R. Mikkulainen at the University of Texas. [4] NEAT was developed 
as a way of increasing the efficiency of machine learning systems. Rather than fixed-topology networks, 
NEAT reconfigures dynamic-topology networks as a way of evolving solutions. The non-linear 
networked protocol of NEAT models hierarchical relationships. It has been shown that NEAT offers the 
possibility of both optimizing and complexifying solutions simultaneously. It is unique because 
structures become increasingly more complex as they become more optimal, strengthening the analogy 
between computational and natural evolution. 

The following diagrams (figures 5a-c) illustrate the difference between the standard GA and NEAT. 

Figure 4a 

Figure 4. A series of increasing morphological complexity.  
4a) Two parametric forms 4b) Recursive hierarchy of one subcomponent 4c) Recursive hierarchy of multiple 

subcomponents 
    

Figure 4b Figure 4c 

Figure 5a: The genetic algorithm flowchart 
(Kalnitz, MTRL 2024) 

 

Figure 5b: The standard GA chromosome 
containing simple scalar values. (Carroll, 2005)  

 

Figure 5c:  The NEAT chromosome containing non-linear networks 
(Stanley and Mikkulainen, 2024) 
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The NEAT algorithm reuses part of the neo-Darwinian GA algorithm, namely an initial population of 
possible solutions, an evaluation of fitness, a selection, crossover, and mutation (figure 5a). In addition, 
it addresses the major constraint of the GA, its linearity. GAs manipulate scalar-based data structures 
(“chromosomes”) that are limited in what they can model. [3] An example shows the crossover of two 
scalar genomes where the right half of parent 1 and the left half of parent 2 combine to form the offspring 
genome (figure 5b). Illustrating the crossover of the NEAT genome, two parents are networks instead 
of arrays. The parent genomes are combined in a more sophisticated way that closely resembles the 
recombination mechanism found in DNA. Genes are aligned and the dominant ones are inherited (figure 
5c). [17] The NEAT model gains the capacity to model combinations of genes, in the same way that 
DNA is a non-linear multi-layered combinatory system.  

 

3.1 NEAT as a modified NN 

This section describes the adaptation of the data structure of the standard neural network (NN) to NEAT, 
in order to model the evolution of a physical architectural object. 

A traditional static NN uses backpropagation for learning and contains fixed input and output layers, 
hidden nodes, directed weighted edges, and sigmoid activation functions (figure 7). A dynamic NEAT 
network is based on a traditional NN (figure 8). The key modification is that hidden nodes and edges are 
dynamic – they can be added and deleted, thus augmenting the mechanism of machine learning. It has 
been shown that evolving dynamic NNs can significantly enhance their performance. [4]  

 

Figure 7: A standard static NN with four layers 
(Kalnitz, MTRL 2024) 

Figure 8: NEAT NN with a dynamic inner layer 
(Kalnitz, MTRL 2024) 

Figure 5b 
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3.2 eNEAT adapted to the evolution of a truss 

To model the evolution of structural trusses, NEAT has been repurposed and shall be renamed eNEAT. 
All of the advantages that NEAT offers in the modeling of evolution have been retained, with two 
modifications. Rather than purely virtual mathematical entities, eNEAT’s networks are analogous to 
genomes in nature, containing abstracted information that regulates the outward form.  Nodes no longer 
contain traditional activation functions. Rather, they are repurposed to encapsulate information such as 
the coordinates of the truss load points, support points, joints, and their associated degrees of freedom. 
Edges are also repurposed. While edge weights in a traditional NN hold virtual information learned via 
backpropagation, the repurposed edge weights contain embedded physical information such as the mass 
of each truss member. 

The next two diagrams illustrate the relationship between an eNEAT network functioning as a genotype 
(figure 9), and its corresponding 2-dimensional truss, its phenotype (figure 10). Nodes, corresponding 
to truss joints, are labeled ‘a’ through ‘f’ and contain the X, and Y coordinates of each joint. Edges 
represent the connecting truss members and their mass. For instance, truss member a-c starts at joint ‘a’ 
located at (0.5, 1.0) and connects to joint ‘c’ at (0, 0), with a weight of 1.8kg. 

In the corresponding truss (figure 10), the labels of the joints (‘a’ through ‘f’)  and the coordinates of 
each joint correspond to the labeled nodes in the genome network (figure 9). Also, the weights of each 
truss member correspond to the edge weights of the genome. 

Darwinian evolution, analogous to the optimization or adaptation of trusses, involves spawning 
successive generations with the goal of minimizing the overall mass of the population of truss solutions. 
As generations are created, a percentage of parent trusses are mutated by adding and deleting nodes 
(joints) and edges (truss members). Crossover of two high-performing parent trusses also results in child 
trusses. The offspring are then evaluated using a finite-element-analysis engine that calculates the mass 
of each child truss. A distance metric is used to categorize the resulting trusses into species. This is done 

Figure 9: A 2-dimensional truss genome 
(Kalnitz, MTRL, 2024) 

 

Figure 10: A 2-dimensional truss phenotype 
(Kalnitz, MTRL, 2024) 

 



Proceedings of the IASS Symposium 2024 
Redefining the Art of Structural Design 

 

 

 7 

 

to protect novel forms so that they can survive during the evolution process. Eventually, the evolutionary 
algorithm converges to a set of solutions that are generally close to optimal, a result that is similar to 
gradient-based optimization algorithms. The next section details the high-level protocol of the eNEAT 
algorithm which implements the mechanism of evolution. 

3.3 The eNEAT protocol 

The high-level protocol of the repurposed eNEAT algorithm is illustrated below (figure 11). The eNEAT 
algorithm is implemented as a proprietary Grasshopper component, written in C#, based on SharpNEAT. 
[15] It interacts with the physics engine, Karamba, which is used for the evaluation of trusses using the 
finite- element-method. [16]  

In a typical evolutionary run, the designer first specifies the load and support points and the materiality, 
cross-section, degrees of freedom, etc. of the desired truss. A population of trusses is initialized with 
each individual having random edge connections that traverse all of the input points. The population is 
categorized into species and all trusses are evaluated. At each generation the population is tested for 
convergence – has the mass stabilized to within a specified threshold? If not, trusses with the lowest 
mass are selected, and subjected again to mutation and crossover, thus creating the next generation. Once 
the model converges or reaches a specified number of generations, the algorithm stops and a set of close-
to-optimal trusses emerges. 

4. Truss Experiment #1 

This experiment aims to create a first iteration of a series of architectural objects with structural 
capabilities as a product of an evolutionary-based NEAT model. The specific goal is to create an 
evolutionary lineage that minimizes the overall mass of 2-dimensional and 3-dimensional trusses. 

 

 

Figure 11: The high-level protocol of eNEAT 
(Kalnitz, MTRL, 2024) 
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4.1 Experimental Protocol 

In this experiment, a truss is evolved with the objective of 
finding a minimum mass, while supporting a certain load and 
with given support points. The basic algorithm first creates a 
population of random solutions. Each solution is then 
evaluated by a finite-element-analysis engine to calculate the 
mass of each truss in the population. Once all individuals are 
evaluated, the best performers are categorized into species, 
with a distance function determining their classification. The 
best performers then go on to form the next generation. A 
percentage remains as is, and others are subjected to various 
mutations and crossovers. Rates of mutation and crossover, 
types of mutations, population size, maximum number of 
generations, and materiality are some of the parameters that 
can be used to tune the algorithm to arrive at reasonable 
results. 

Illustrating the evolutionary sequence of a truss, its minimal 
weight is 116.04 kg due to a delete mutation (figure 12a). Its 
parent truss weight is 138.0kg due to another delete mutation 
(figure 12b). The initial truss weight is 210.98kg (figure 12c). 

The matrix below depicts three species horizontally and three 
generations vertically. Trusses g and h crossover to form truss 
d. Truss h mutates to e and then to b through mutation 
(addition and deletion of edges). Trusses j, f, and c are novel 
formations during the evolution process (figure 13). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12c: Initial truss configuration. 

Figure 12b: Evolving truss with less members. 

Figure12a: Minimal truss. 

Figure 13: Three species in three generations of evolution showing various mutations. 



Proceedings of the IASS Symposium 2024 
Redefining the Art of Structural Design 

 

 

 9 

 

5. Human Interaction 

Typical truss configurations often have a certain aesthetic. The regularity of their 
geometry may be considered somewhat artificial as it relates to an organic roof form 
(figure 14). The evolutionary system described in this paper generates solutions 
which are not constrained by artificial geometries or shape grammars. Also, as the 
form evolves, it responds concurrently to multiple influences. An evolved pergola 
(figure 15) illustrates an irregular organic truss structure which is responsive to both 
structure and light penetration. 

The algorithm, by design, allows for the designer or architect to be involved at any 
point during the generation phase. Samples can be viewed and selected for enhanced fitness based on 
aesthetic or other criteria. Once the algorithm converges, a set of suitable solutions emerges from which 
the designer can select an option that they desire. 

6. Results and Observations 
Preliminary experiments have confirmed that the algorithm is more efficient in terms of computation 
time than standard backpropagation machine learning systems. This is due to the learning mechanism 
of modifying the topology of networks. Despite this gain in efficiency, further improvements can be 
made. For instance, during the evolution process, often one mutation negates a previous one which leads 
to inefficiency. The emergence of a number of distinct species of truss topologies leads to a series of 
similarly fit solutions from which the designer can select. Still early in the experimental stage, 
convergence to close-to-optimal solutions can be improved. 

7. Discussion 

We are now in a position to delineate four principles that may serve as a vision for future architecture 
based on the evolutionary model as expounded by NEAT: 

a) Internal and External Pressure: Buildings, akin to organisms, are built around the concept of optimal 
balance, creating an ontological ability to adapt to changing conditions. 

b) NEAT versus GA: Architecture is built around the complexity of forms and abundant possibilities, 
rather than constrained by a reductionist relation between gene and trait.  

c) Complexity: The power of combining elements produces architectural forms with structural cohesion 
and hierarchy. 

d) Differentiation and Novelty: Populations of built forms exhibit diversity and creativity, with variation 
and novelty emerging within the population. 

Figure 14: A regular 
truss supporting an 
organic roof form 

Figure 15: A pergola featuring an irregular evolved truss aesthetic  
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8. Future Work 
The NEAT algorithm has many control parameters such as population size, number of species, types of 
mutations, mutation rates, etc. Tuning is necessary to investigate the limits of the algorithm. Structural 
performance such as multiple unbalanced loads and deformation need to be considered. A graph of 
fitness vs. generation is needed to observe convergence rates. Environmental analysis tools such as 
Ladybug [6] can be integrated. Also, further support for modelling 3-dimensional trusses is necessary. 

9. Conclusion 
Since Darwin’s time, architectural discourse has been influenced by the theory of evolution. The genetic 
algorithm is a powerful computational tool for generating and optimizing designs. Although it has 
become a mainstay in the architectural design process, due to its reductionist perspective, it has inherent 
limitations. We have proposed an enhancement called eNEAT which augments the GA by evolving 
networks rather than simple scalar parameters. Thus, eNEAT has the capacity to model combinations, 
thereby simulating more closely the way DNA regulates the construction of natural organisms. Its 
enhanced complexity allows for the modeling of hierarchical morphologies, responsive to parameters 
that are internal to the architectural artifact and external to the environment. Moreover, manifold 
attributes of the built form can be developed concurrently in a unified phase, rather than via the 
conventional sequential architectural design process. The multidisciplinary framework of this project, 
using biological circuitry in conjunction with computer science, engineering, and architectural design 
and planning offers the potential of developing a computational protocol that is capable of negotiating 
multiple classes of independent information in the designing of the architectural form. 
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