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Abstract

The optimization of shell structures remains a subject of extensive research. When considering variable
loads, existing models and methods reach their limitations. Due to the complex interdependencies and
interactions of multi load case scenarios, form-finding for compression-only shells often focuses solely
on self-weight and constant loads. The dimensioning of the cross section usually takes place after the
form-finding, to accommodate all relevant load cases. This paper presents a first investigation of an
integrated shape- and thickness-optimization for multi load-case scenarios.

The basic idea is an alternative formulation of the spring elements in the particle-based simulation.
The direction of force remains collinear to the spring direction to ensure compression-only elements.
However, the exerted spring force is no longer calculated from the element’s individual elongation. This
adaptation allows the manipulation of the force flow within the structure while preventing horizontal
displacement of the particles. Limiting the particle’s degrees of freedom facilitates to adjust the load
cases‘ individual thrust-lines, to effectively reduce the enveloping cross section.

The paper describes the fundamental concept, mechanism, and the first digital exploration. The individ-
ual steps are illustrated using an exemplary 2D arch structure. The research holds potential of increasing
the efficiency of structures significantly. It can eliminate the necessity for the constant loads to be the
sole decisive load in shape-optimization, opening up a wide field of new application scenarios. Conse-
quently, comparatively lightweight but compression-resistant materials may also become appealing for
compression-only structures.

Keywords: Form-finding, Multi-Objective Optimization, Multi Load-Cases, Variable Loads, Cross Section Opti-
mization, Envelope Optimization

1. Introduction
Form finding for compression only structures can dramatically reduce material consumption, conse-
quently mitigating the environmental impact of the designed structures. The roots of numerical form
finding methods can be traced back to the 1960s, when the transition from physical models to the initial
stages of digital simulation marked a pivotal moment in the field. Numerical simulations, at their incep-
tion, sought to emulate the behaviors observed in physical models, laying the groundwork for today’s
frameworks. Driven by the increased computational power in the 1990s, methodological advancements
were setting the stage for a new era in structural optimization. The ability to digitally simulate and
optimize structures opened avenues for more efficient and sustainable design practices.
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An overarching characteristic of most form finding methods is their focus on one dominating load case.
This practice relates to the exponentially growing complexity of additionally constrained systems. How-
ever, it introduces a limitation that echoes through the entire design process. The simplified models
restrict the applicability of the optimization method to a narrow spectrum of construction methods and
materials, like concrete or stone, because only they bring the recommended specific weight for a dom-
inating self-weight load-case. With the possibility to integrate various load case scenarios in the opti-
mization procedure, the dead load must not be the dominant load anymore. Hence, more construction
materials, including unconventional choices like foam glass or wood seem promising for compression
only structures. In response to this challenge, the paper presents a first investigation of simultaneous
multi-load-case shape and cross section optimization based on a dynamic, particle-based simulation. It
allows for a bottom-up approach and holds the potential for further extension.

2. Thrust lines and cross sections for multiple load cases
The lower bound theorem for masonry, as formulated by Jaques Heymann [1], states that an unreinforced
structure remains safe under specific loads, as long as there exists at least one compressive solution that
equilibrates them, forming a thrust line (TL) that fits within the structure’s cross section, as shown in
Figure 1.
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Figure 1: Thrust-lines for two different load-cases: (a) dead load and (b) dead load + point load, with
corresponding solution spaces (possible scaling) for each individual thrust-line in the given cross

section.

The historical strategy to reinforce such compression only structures for asymmetric loading, used until
today, is to globally increase the cross sectional area. This strategy yields a doubly stabilizing effect for
asymmetric load cases. On the one hand, a larger cross section results in higher mass of the structure.
Since the shape of the TL emerges from the equilibrium of all applied loads, the influence and therefore
the displacement of the asymmetric loaded TLs (in relation to the TL of solely dead load) gets reduced.
On the other hand, an increased cross section provides more space to accommodate thrust lines of asym-
metric load scenarios [2]. However, this approach brings some mayor disadvantages. Firstly, material
choice gets narrowed down dramatically as this strategy is only effective with materials of high specific
weight. Moreover, globally increasing the cross section, and thereby the overall material consumption,
does not align with the goal of reducing the environmental impact by form finding and optimization.
This particularly holds true when dealing with modern high-tech materials with high environmental im-
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pact like (UHP-) concrete. By extending the form finding procedure for compression-only structures to
multiple load cases, the necessary cross section can theoretically be reduced to the minimum required
dimension. Minimum in this case means the one cross section, which still respects the lower bound
theorem for masonry for all simulated load cases. With this strategy unnecessary material usage and
environmental impact can be minimized, while maintaining a pure compression state in all load cases.
However, this leads to some challenging problems which are briefly explained in the following subsec-
tions.
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Figure 2: Problem with individual scaling: two versions of thrust-lines with different scaling and
corresponding envelope cross section (dark gray). The dead load will be determined by the cross

section in the next iteration.

2.1. Increased complexity of the iterative calculation

The core of form finding is to determine the shape of the TL under given loads. In the simulation
of dynamic particle based methods (choice of solver method see section 3.) the TL is represented by
a discretized curve (polyline), which is defined by control points as shown in Figure 1. Loads are
accumulated to ”lumped masses” and applied to the control points of the polyline. Extending the method
to multi load case scenarios, each TL and therefore each control point is represented by manifolds for
every single load case, shown in Figure 2. This extension is increasing the total number of nodes n in
the simulation to n lc, where lc is the total number of load cases.
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Figure 3: Increasing complexity when adding load cases to the form finding.

Following the lower bound theorem for masonry, each TL manifold has to fit within the global cross
section. However, the cross section itself is defined by the very same TLs. The increasing interdepen-
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dencies with additional load-cases is shown in Figure 3b for an additional point load (form-independent)
and snow load (form-dependent, like the dead load). These additional interdependencies increase the
load-case related constraints of each node from lc to (lc2−1). Solving for these constraints significantly
increases the complexity of the calculation and requires fast algorithms to handle the increasing number
of constraints.

2.2. Stability of the solver

Increasing numbers, contradicting or non-continuous constraints decrease the stability of the problem.
The enveloping cross section for example, is a non-continuous constraint as the cross section is defined
by only two (upper and lower limit) of all control point manifolds, which can change suddenly from
iteration to iteration. The method has to provide sufficient stability to handle such discrete constraints.

2.3. Bending moments from varying horizontal displacement

Varying horizontal displacement of the control point’s manifolds leads to varying mass accumulation in
different load cases. This can introduce bending moments, potentially compromising structural integrity
as shown in Figure 4. The most critical regions for this problem are the perimeters of the shell, when
thrust-surfaces of variable loads exceed the horizontal area of the constant load case.

2.4. Determination of the envelope cross section

Under most circumstances it is very difficult to determine which of the points’ manifolds actually has to
delineate the cross section. While some particles may have a lower z-coordinate than their manifolds,
they can nevertheless be the upward limiting entity due to horizontal displacement as shown in Figure 4.
This problem gets even more complex in 3D-space. It could be solved geometrically - creating the actual
TL geometry (thrust surface in 3D) from the control points, projecting the manifold particles onto the
geometry and analyzing the projection vector. The problem with this strategy is the computational cost,
because it has to take place every iteration.
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Figure 4: Problems with bending and determination of the envelope.

In summary, while the lower bound theorem provides a theoretical framework for ensuring the safety
of masonry structures under specific load conditions, its extension to multiple load cases introduces
complexities that must be addressed carefully. Tackling issues such as load case interdependencies
and the accumulation of lumped masses requires both advanced computational techniques and refined
formulation strategies to ensure the structural integrity and efficiency of the optimized designs.

4



Proceedings of the IASS Annual Symposium 2024
Redefining the Art of Structural Design

3. The solver method
Veenendaal and Block [3] categorized computational form finding methods in 3 main groups: stiffness
matrix methods, geometric stiffness methods and dynamic equilibrium methods. As we are tackling
problems with a large number of nodes and constraints as described in section 2., the total operation
count and stability are the main parameters to choose the calculation method. However we still want
to use a true inverse form finding method (finding the exact solution) according to the categorization
of Cuvilliers [4]. For our purpose and state of knowledge, dynamic particle based methods have some
decisive advantages in these fields.

Most important, all required terms in the element’s strain-displacement or force-displacement relations
can be considered in the initial formulation of the constraints, and the corresponding internal force vector
can easily be derived. There is no need for (higher-order) derivative calculation in the iterative proce-
dure, thus simplifying the mathematics [5]. Especially the low level mathematical formulation is very
important for the exploration of a design oriented optimization method that is used and extended by
users of various professions. Also, in particle based methods the solution is obtained by recursive proce-
dure, so only a few lines of code is required compared to equation solvers for NR-type methods[6]. This
facilitates the possibility of later-on-extension with respectively low effort, like adding manufacturing
related constraints to the form finding.

The most known dynamic equilibrium methods in the field of structural design are supposedly Dynamic
Relaxation (DR) [7] and Particle Spring Systems (PS) [8]. However, with the recent trend in Artificial
Intelligence (AI), Machine Learning (ML) and applied statistics, huge steps were made in computational
methods for distributed minimization algorithms, tackling stability problems as well as speed and effi-
ciency. This led to a new generation of particle based solvers, mostly in the field of computer game
engines, which can also be used for form finding. The Alternating Direction Method of Multipliers
(ADMM)[9], Projective Dynamics Method (PDM) [10] or Constraint Projection Method (PCM) [11]
are simple but powerful algorithms that are well suited to distributed convex optimization, in which
the large optimization problems are decomposed to small local sub-problems and coordinated to find
a global solution. By using augmented lagrangians, ADMM is very robust. It is suited for very stiff
problems (high impact of the constraint to reach the projected horizontal origin) see subsection 4.1., as
well as problems which are not strictly convex or finite, like the envelope cross section constraints [9].
Therefore we chose to do the first steps with the Kangaroo 2 Solver, which builds on ideas of ADMM
and PDM and gives the possibility to design custom goal objects for the calculation [12]. The solver is
sufficient for simple examinations of multi load-case form finding with reduced number of nodes and
load-cases. There is no possibility to build manifolds of nodes, why we used the y-direction to ’layer’
manifolds in space for this paper. To increase speed and enable dimension-independent manifolds, a
specific solver or implementation is the desired next step of this project.

4. Simulation Elements
In the following subsections, the constraints of the conducted simulations are described. They can be
determined separately because of the chosen solver method. This splits the problem statement in separate
steps.

4.1. Projection-Oriented Spring

As described in subsection 2.3. and subsection 2.4., horizontal displacement is a huge problem for
multi load case form finding. Our strategy is to simply avoid the problem by limiting the horizontal
displacements of the nodes’ manifolds with the constraint definitions. This can be accomplished by an
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alternated formulation of the spring elements.

There already has been some research in the definition of spring equations, limiting their end nodes to
vertical movement during form finding. Harding and Shepherd [13] suggested the use of ”zero-length
springs” [14] in combination with dynamically updated lumped masses. The zero-length springs obey
Hooke’s Law, but have a natural length of 0, therefore the exerted force is directly proportional to the
length of the spring. This can limit the horizontal displacements when two boundary conditions are
fulfilled: firstly, all initial spring elements have to have the same length, which limits the topology and
the shape of the structures quite dramatically; secondly, all boundary nodes have to be fixed (at least
horizontally).

To not restrict the design freedom so drastically, we chose to limit the displacement of the nodes in a
different manner. Starting from the vector form of Hook’s Law in Equation (1), where p00 and p01 are
the initial nodes of the spring elements, pi0 and pi1 their representations in the current iteration and k
the spring constant, 1 − (|pi0 − pi1|/|p00 − p01|) can be described as stretch factor, derived from the ratio
of current to initial length. By adjusting this stretch factor one can manipulate the exerted force of the
spring without compromising the aimed membrane state, the force direction is still determined by the
actual spring direction.

f = k (1− |pi0 − pi1|
|p00 − p01|

)(pi0 − pi1) (1)

Multiplying the individual coordinates of the stretch factor by a transformation matrix Eb, in this case
for the xy-Plane, that is normal to the applied loads, leads to a stretch factor that reacts to the projected
elongation instead of the actual one. On the element level this change only has minor influence on the
elements behavior. However, in the global system, when all spring elements aim to reach their initial
projected length, it leads to converging minimization of the nodes’ displacement with respect to the
projection plane.

Eb =

1 0 0

0 1 0

0 0 0

 , f = k (1− |Eb · (pi0 − pi1)|
|Eb · (p00 − p01)|

)(pi0 − pi1) (2)

Like the zero-length approach, the Projection-Oriented Spring (POS) comes at a cost. The projection
is only congruent to the initial state of the network when non-collinear fixed points exist. Additionally,
the initial configuration must obey the constraints for compression only structures analogously to the
configuration of the ’primal grid’ in the Thrust-Network Analysis (TNA) [15]. Unlike TNA, this must
not be a failure criterion for the form finding, but if the primal grid does not meet all thrust-network
related criteria, horizontal displacement will occur.

Lastly, the POS only reacts to displacement with respect to the projection plane. As the elements con-
verge towards their initial projected length, the exerted force reduces to 0. Applied loads can not longer
be equilibriated by the POS when converging. This behavior relates to the scalability of thrust-lines in
the direction of the applied loads and there is an infinite number of scale factors for working configura-
tions of a primal grid. By scaling the form one can directly control the horizontal forces in the system.
In TNA the exact solution can only be computed from the dual grid with the additional definition of a
scale factor, in the implementation RhinoVault2 [16] this is realized with a target height. This required,
additional constraint could also be some other variable - like maximum normal force, maximum slope
or any kind of cross section related constraint.
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4.2. Self weight

Self weight is usually calculated by the tributary area of the nodes. With multiple load cases, the required
cross section has to be determined with the lower bound theorem of masonry. With the use of POSs, node
manifolds are aligned normal to the projection plane (here: z-direction). The required cross section can
therefore directly be derived from the manifolds’ envelope, the maximum and minimum z-coordinate.
To ensure a minimum thickness of the cross section we add a constant parametric value to this minimal
thickness.

4.3. Height constraints

As already mentioned in subsection 4.1. an additional constraint is needed to determine a specific solu-
tion in membrane state. We want to make use of this requirement and suggest constraints that align the
different load case specific thrust lines individually to effectively reduce the required cross section.

The first approach is to define a global maximum height zmax of the individual TLs, as realized in Rhino-
Vault2. The constraint definition is derived from the spring equation (1). The stretch factor and therefore
the exerted spring force is calculated with a combined positivity constraint function s(pi0z, p

i
1z, zmax) for

the z-coordinates of the nodes pi0 and pi1, the direction of the force remains unchanged. When exceeding
the globally defined z-limit, the spring starts to exert force, leading to horizontal displacement in the first
step. The horizontal movement will be equilibriated by the systems’ POSs in the following iterations.
Tests of this constraint show no correlation to cross sectional area, although it can be very efficient in
some cases.

h(z1, z2) =

{
z1 − z2 if z1 − z2 ≥ 0

0 if z1 − z2 < 0
(3)

s(pi1z, p
i
2z, zmax) = h(pi1z, zmax) + h(pi2z, zmax) (4)

Fmaxheight
P0 = k s(pi0z, p

i
1z, zmax)(p

i
1 − pi0) = −Fmaxheight

P1 (5)

The second approach uses the same calculation method as the first one [equation (5)], but an average
height of the manifold points instead of a global value zmax. The manifold average z-value gets updated
every iteration.

4.4. Slope constraints

The force in a catenary relates to the slope (in force direction), so our second approach for additional
constraints, to minimize the cross section, is based on the slope of the POSs. The first attempt was
to approach a globally defined slope. The stretch factor, and therefore the exerted force F gs is directly
derived from the nodes’ coordinates, like shown in equation (6). The steeper, the larger the exerted force
gets. Again, this initially leads to horizontal displacement, which will be equilibriated in the following
iterations. Tests showed that this approach can reduce the global cross section by relating all TLs to a
globally defined goal.

F gs
P0 = k (1−

|pi1z − pi0z|
|pi1 − pi0|

) (pi1 − pi0) = −F gs
P1 (6)

vavg =

∑lc−1
i=0 |pi1 − pi0|
lc− 1

, F as
P0 = k (1−

|pi1z − pi0z|
vavg

) (pi1 − pi0) = −F as
P1 (7)
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However one could clearly observe that no balancing in relation to the TLs manifolds takes place. For
this reason we interchanged the globally defined slope to an average slope of POSs manifolds. As shown
in equation (7), pi0 and pi1 are start and end points of the load case manifolds i and lc is the number of
load cases. This constraint almost always shows a significant reduction of the cross sectional area,
although it gets outperformed in specific cases.

5. Exemplary shape- and cross section optimization for multiple load cases of an arch
Due to the dimension-limitation with the used solver and the ’layering-method’ (see section 3.), we
chose a linear arch structure as demonstration object for this paper. The form-finding setup was as
follows: the arch span is 10.0 m, the initial geometry consists of a linear polyline with 21 control points
(P0 − P20), therefore every segment is initially 0.5 m long; the minimum thickness of the cross section
optimization constraint was set to 0.05 m with a specific weight of 24 kN/m²; we apply 3 asymmetrically
placed point loads (F1, F2, F3) to the nodes P3, P8 and P13. Loads are assembled to 4 load cases: LC0

= dead load from cross section (DL), LC1 = DL + F1 + F2, LC2 = DL + F2 + F3 and LC3 = DL + F3

+ F1. During the form finding we chose the stiffness parameters (k) to reach a target height of 1.5 m
(highest point). Small deviations (>0.1 m) are corrected by scaling, so that cross section areas are better
comparable for all examples of cross section minimization constraints.
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6. Conclusion
The integration of different load cases into the form-finding process is a promising extension for de-
signing efficient shell structures. With the described method and solver, we have successfully con-
ducted form-finding for a compression only arch structure with cross section optimization and variable
loads. The initial issues with horizontal displacement were resolved through an alternative formula-
tion of spring elements in the dynamic, particle-based calculation. This principle was also applied to
other constraints. It appears to be a promising approach for a variety of constraints in form-finding and
is worthwhile to be examined further. The multitude of different objectives became clearly evident in
the computation time during the form-finding process. This might be attributed to the formulation of
the individual constraints and the implementation of the solver. The used solver defines all manifolds
as separate elements, resulting in multiple executions of the same calculations on element level every
iteration. A specific solver or implementation is the desired next step of this project, only then, the
method can be tested with three-dimensional problems as their element and constraint count increases
significantly.
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