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Abstract 
This paper presents an intuitive method for form-finding of membrane structures using graphic statics. 
In the design of membrane structures, a higher degree of intricacy often results in complex geometric 
constraints, requiring a sophisticated design tool. In this paper, we extend the geometric method of 
finding edge cable radii developed by Frei Otto through reciprocal diagrams of form and forces. The 
proposed method allows for a precise control of edge cable forces and reaction force vectors of 
uniformly prestressed membrane structures. Our second contribution lies in the application of the force 
density method to planar isotropic stress fields and its reciprocal construction. We provide a graphical 
and a numerical proof of the duality between the two stress formulations based on nodal forces and 
natural forces. Lastly, through practical examples we demonstrate the application of the proposed 
method, in which the precise handling of the internal forces and reactions are required for project 
specific design constraints. 

Keywords: Graphic statics, reciprocal figures, force density method, form-finding, membrane structure, conceptual design.  

1. Introduction  

1.1. Motivation 

The finding of equilibrium for membrane structures is a well-developed topic, from the pioneering 
work of Frei Otto to computational modelling methods using various formulations. In the former, 
scaled down prototypes are utilized to develop understanding of form and fabrication, which is 
intuitive and sensible but can lack efficiency and precision [1]. In the latter, despite being fast and 
precise, one may soon lose track of the interplay between form and force, buried in the formulation of 
elements or the rather abstract task of defining force densities.  

We are therefore motivated to bring the task of membrane form-finding under focus again, primarily 
through the lens of graphic statics. We present an intuitive method of finding equilibrium of cable 
reinforced membranes, by starting with a planar construction of reciprocal diagrams, followed by 
discretization and lifting of the 2D diagram through thereby informed force densities. Possible 
application of the method is shown by a few practical examples.  
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1.2. Related work 

The force density method (FDM) was developed initially for cable net structures [2] such as the 1972 
Olympic stadium roof in Munich, which linearly solves the network geometry by directly defining 
force densities of links in the net, given external loads and positions of anchor points, based solely on 
equilibrium conditions.  

The extension of the force density method to tackle membrane form-finding, i.e. finding geometry of 
minimal surfaces given boundary geometries, was done by Singer [3], Maurin & Motro [4] and 
Pauletti [5] among others. Additionally, the idea of lumping stress of a triangular face membrane 
element can be traced in their work, which inspired the use of reciprocal figures in this paper. While 
Singer, Maurin and Motro proposed to lump stress as nodal forces which are perpendicular to opposite 
sides of a triangular face, Pauletti formulated the forces in the direction of the triangle edges hence the 
name “natural force density”. We prove the equivalence of these two groups of methods, which is 
discussed further in Section 3.  

Thrust network analysis (TNA) proposed by Block [6] was initially intended for compression-only 
masonry vaults and was extended for membrane structures [7], where the major task is finding 
equilibrium of a statically indetermined network given external loads, to approach a desired geometry 
by minimizing the differences in vertical positions with optimization techniques.  

1.3. Scope 

The scope of the work in this paper is limited to cable-reinforced, uniformly prestressed membranes, 
i.e. without stiff edge or ridge beams and with equal prestress in the fabric’s wrap and weft directions.  

No external loads are considered. 

2. Planar equilibrium 

2.1. Graphic statics and reciprocal figures 

Maxwell proposed the concept of reciprocal figures i.e., a form diagram and a force diagram, to 
express the equilibrium of planar trusses [8], where the forces acting at one node in the form diagram 
is denoted by one closed polygon in the force diagram. The form and force diagrams can be 
constructed to any constant angle. Typically used are parallel (Cremona convention) and perpendicular 
(Maxwell convention) constructions. The latter has the property of preserving relative position of 
edges and was found suitable in the application presented in this paper (see Fig.1). 

 

Figure 1: (a) Form diagram in which three forces act on a single point. (b) Force diagram using Cremona 
convention, in which forces are parallel to the corresponding edges in the form diagram. (c) Force diagram using 

Maxwell convention, in which forces are perpendicular to form edges. 

2.2. Frei Otto’s sketch on determination of anchoring force 

The study of convertible roofs by Frei Otto and the IL team [9] documented a graphical method of 
determination of anchoring force direction in plane. This method indicates that the resultant force of 
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two edge cables at this anchor point lies in the direction of shared chord of the two circular profiles of 
the cables.  This geometric property can be further explored with the aid of reciprocal figures of form 
and force and the well-known formula 𝐹 ൌ 𝑝 ⋅ 𝑟 for hydrostatic pressure. The reciprocal figures in 
Figure 2 illustrate the nodal equilibrium at the intersection of two edge cables of two different radii. 
The hydrostatic pressure provides a linear relation between the edge radius and the cable force, where 
the direction of the cable force can be drawn perpendicular to the circular edge in the force diagram 
(green and blue lines). Consequently, the anchoring force as the sum of two edge cable forces 𝐹ଵ ൅ 𝐹ଶ 
(in red) lies in the direction of the shared chord and has the amplitude of the distance between two 
circle centers provided that the prestress is unit isotropy. Here, the form edge, i.e. anchoring cable, and 
the force edge, i.e. connection of two centers, sit orthogonally to each other following the Maxwell 
convention. 

This principle of constructing nodal equilibrium of cable ends can be extended to the entire perimeter 
of a cable supported membrane structure, resulting in a closed force polygon that describes the 
equilibrium of anchor forces, as illustrated in Figure 3. 

 

Figure 2:  (left) Anchoring cable and anchoring force is a reciprocal pair following Maxwell convention. (right) 
Rotated figure in Cremona convention for clarification. 

 

Figure 3: (left) Frei Otto’s drawing method applied to a 5-supports membrane structure, creating a form diagram. 
(right) Corresponding force diagram following the Maxwell convention. The outer closed polygon indicates the 

equilibrium of all anchor forces. The triangles a-e represents the nodal equilibrium of nodes A-E. 
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3. Vertical equilibrium 

3.1. Discretization: lumping isotropic stress as nodal forces 

Section 2 discussed horizontal equilibrium of isotropic membrane structures in a two-dimensional 
plane using graphical construction of the edge cable forces. The continuous isotropic stress field 
requires discretization in order to be used to find three-dimensional vertical equilibrium based on the 
found two-dimensional equilibrium. Using the shape function of constant strain triangular (CST) 
elements [10], the elementwise kinematic matrix can be expressed as follows.  

 𝐵 ൌ
ଵ

ଶௌ
൥
𝑦஼ െ 𝑦஻ 0 െ𝑦஼ ൅ 𝑦஺ 0 𝑦஻ െ 𝑦஺ 0

0 െ𝑥஼ ൅ 𝑥஻ 0 𝑥஼ െ 𝑥஺ 0 െ𝑥஻ ൅ 𝑥஺
െ𝑥஼ ൅ 𝑥஻ 𝑦஼ െ 𝑦஻ 𝑥஼ െ 𝑥஺ െ𝑦஼ ൅ 𝑦஺ െ𝑥஻ ൅ 𝑥஺ 𝑦஻ െ 𝑦஺

൩ (1) 

Here, 𝑥 and 𝑦 denote the coordinates of node A, B and C, and 𝑆 the area of the triangle (see Fig. 4). 
Using the static-kinematic duality 𝐴 ൌ 𝐵்with 𝐴 being the elementwise equilibrium matrix, the nodal 
force 𝑛 ൌ ሾ𝑛஺,௫ 𝑛஺,௬ 𝑛஻,௫ 𝑛஻,௬ 𝑛஼,௫ 𝑛஼,௬ሿ can be expressed with respect to the element force 
𝜎 ൌ ሾ𝜎ଵ 𝜎ଶ 𝜏ሿ as follows. 

 𝑛 ൌ 𝑆𝐴𝜎 (2) 

With the assumption of a unit isotropic stress field 𝜎 ൌ ሾ1 1 0ሿ , the nodal force yields the 
following: 

 𝑛 ൌ
ଵ

ଶ
ሾ𝑦஼ െ 𝑦஻ െ𝑥஼ ൅ 𝑥஻ െ𝑦஼ ൅ 𝑦஺ 𝑥஼ െ 𝑥஺ 𝑦஻ െ 𝑦஺ െ𝑥஻ ൅ 𝑥஺ሿ் (3) 

 ሾ𝑛஺
் 𝑛஻

் 𝑛஼
்ሿ (4) 

 

Figure 4: Discretization of an isotropically stressed membrane patch reinforced by edge cables 

We refer to these derived forces in 𝑛஺ , 𝑛஻ , 𝑛஼  as “nodal forces” in this paper. By looking at the 
expression (3), two observations can be made: (i) the nodal force is perpendicular to the opposing 
edge, and (ii) the length of the nodal force is half of that of the opposing edge. These lemmas can be 
easily proven by using the edge vector 𝑢஻஼ ൌ ሾ𝑥஼ െ 𝑥஻ 𝑦஼ െ 𝑦஻ሿ, with which the orthogonality 𝑛஺ ∙
𝑢஻஼ ൌ 0  and the length identity |𝑛஺| ൌ |𝑢஻஼| 2⁄  hold valid. As mentioned, different approaches 
regarding these properties of isotropic membrane stress were discussed by Singer [3] and Maurin & 
Motro [4]. 

3.2. Equivalent linear element and reciprocal figure of form and force 

With these two lemmas, we can draw a reciprocal figure of form and force polygon as shown in Figure 
5.  The form diagram is made by introducing an equivalent linear element, a line from each vertex (A, 
B, C) to the orthocenter D, while the force diagram consists of edges orthogonal to corresponding 
nodal forces, which fits exactly inside the triangular element, i.e. the edges of the median triangle.  

area: 𝑆 
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Figure 5: Form and force diagram of an isotropic CST element with help of additional node D, the orthocenter of 
the triangle. (left) superposition of the two diagrams, (middle) form diagram and (right) force diagram. 

One can extend the elementwise diagram to the reciprocal figure of form and force polygon of an 
entire 2D isotropic membrane structure as illustrated in Figure 6. 

 

Figure 6: Form and force diagram of a 2D isotropic membrane structure with edge cables: (left) superposition of 
the two diagrams, (middle) form diagram and (right) force diagram. 

The constructed 2D equilibrium can then be used as a basis for finding a vertical equilibrium using the 
force density method (FDM). However, this method has potential drawbacks when used in conjunction 
with the FDM. Firstly, the new node (orthocenter) signifies a new degree of freedom, increasing the 
total degree of freedom and thus the computational cost. Secondly, one edge of the form diagram 
vanishes in right-angled triangles, and one edge direction flips in obtuse triangles, rendering the force 
density value of the edge negative (see Fig. 7). 

 

Figure 7: Form and force diagram of an acute (left), right-angled (middle) and obtuse (right) triangle. 
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3.3. Reciprocal figure of form and force using natural force 

The drawbacks discussed in Section 3.2 can be mitigated using natural forces instead of nodal forces 
which have been discussed so far. Natural forces represent forces in a membrane element which are 
oriented in the direction of the element edges [5]. The reciprocal figure reveals that a nodal force 
acting on one node can be decomposed by natural forces acting on two connecting edges, while 
retaining the orthogonality of the form and force diagram. Figure 8 illustrates the superposition of the 
reciprocal figure for nodal forces (in red) and natural forces (in blue). Furthermore, an interesting 
duality is revealed here: the form diagram of the nodal forces is similar in shape to the force diagram 
of the natural forces, and the force diagram of the nodal forces is similar in shape to the form diagram 
of the natural forces.  

  

 

Figure 8: (a: left) Superposed diagrams of (b) and (c). (b: middle) Superposed form diagrams of nodal forces and 
natural forces. (c: right) Superposed force diagrams of nodal and natural forces. 

3.4. Algebraic proof for the identity between nodal and natural force diagram 

This graphical duality of nodal and natural forces leads to the following algebraic identity, where the 
force density of the nodal force is the inverse of the force density of the natural force. 

 𝑞஼ ൌ
௙಴
௟಴
ൌ

௟ಲಳ
௙ಲಳ

ൌ
ଵ

௤ಲಳ
 (5) 

Here, 𝑓, 𝑙 and 𝑞 denote respectively the force, the length and the force density of each diagram (see 
Fig. 8). The equilibrium matrix of the triangular element (e.g. for z direction) with respect to nodal 
forces can be expressed using connectivity matrix 𝐶 and diagonal matrix of the force densities 𝑄 as 
follows: 

 𝐾 ൌ 𝐶்𝑄𝐶 ൌ ൦

𝑞஺ 0 0 െ𝑞஺
0 𝑞஻ 0 െ𝑞஻
0 0 𝑞஼ െ𝑞஼
െ𝑞஺ െ𝑞஻ െ𝑞஼ 𝑞஺ ൅ 𝑞஻ ൅ 𝑞஼

൪ ൌ ൤
𝐾ଵଵ 𝐾ଵଶ
𝐾ଶଵ 𝐾ଶଶ

൨ (6) 

In this expression, the fourth degree of freedom represents the node D. Performing static condensation 
on the node D, the reduced equilibrium matrix with respect to nodes A, B and C can be written as 
follows. 

 𝐾௥௘ௗ ൌ 𝐾ଵଵ െ 𝐾ଵଶ𝐾ଶଶ
ିଵ𝐾ଶଵ ൌ

ଵ

௤ಲା௤ಳା௤಴
൥
𝑞஺𝑞஻ ൅ 𝑞஺𝑞஼ െ𝑞஺𝑞஻ െ𝑞஺𝑞஼

െ𝑞஺𝑞஻ 𝑞஺𝑞஻ ൅ 𝑞஻𝑞஼ െ𝑞஻𝑞஼
െ𝑞஺𝑞஼ െ𝑞஻𝑞஼ 𝑞஺𝑞஼ ൅ 𝑞஻𝑞஼

൩ (7) 

With the identity 𝑞௖ ൌ 1 𝑞஺஻⁄ , the reduced equilibrium matrix 𝐾௥௘ௗ can be rewritten with respect to 
natural forces as follows. 

(a) (b) (c) 
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 𝐾௥௘ௗ ൌ ൥
𝑞஺஻ ൅ 𝑞஼஺ െ𝑞஺஻ െ𝑞஼஺
െ𝑞஺஻ 𝑞஺஻ ൅ 𝑞஻஼ െ𝑞஻஼
െ𝑞஼஺ െ𝑞஻஼ 𝑞஼஺ ൅ 𝑞஻஼

൩ (8) 

The equilibrium matrix (8) represents precisely the element matrix of the natural force density method 
(NFDM) proposed by Pauletti et al [5]. 

3.5. Solving 3D equilibrium 

Using either a nodal or a natural force diagram, the FDM, or the NFDM in the latter case, can be 
constructed for finding the vertical equilibrium. Figure 9 (left) illustrates the reciprocal diagram using 
natural forces for the complete structure, while Figure 9 (right) shows its ‘lifted’ three-dimensional 
equilibrium for the elevated support points in space. The obvious advantage of this approach is that the 
initial 2D diagram being the projection of the 3D structure allows for precise plan arrangement of the 
structure without resorting to a complex numerical computation. This lifting method based on the 
force density approach has a side effect: the resulting forces in 3D are scaled by the amount of slope 
and as this slope is variable across the surface, the result is an anisotropic stress state in 3D.  

 

Figure 9: (left) Superposed reciprocal figure of form and force diagram using natural forces. (right) ‘lifted’ three-
dimensional equilibrium as a result of the NFDM. 

4. Applications 

4.1. Convertible membrane roofs 

In the planning of a convertible membrane roof, the design of moving anchors on dedicated rails plays 
a crucial role. Mainly two strategies can be observed, firstly with sliding anchors on low-friction rails 
(passive anchors) pulled by e.g. a driving cable and secondly using motorized anchors with gears on 
linear racks (active anchors). In the former case the anchors transfer only perpendicular forces to the 
substructure and have no stiffness along the rail, while in the latter the anchors rigid along the rail is 
capable of transferring inclined reactions , at the cost of more motors and advanced rack design. For 
built applications, the authors refer to the roof over a street canyon in Buchs, Switzerland, and the city 
hall roof in Vienna, Austria [11]. In either case, a minimized longitudinal force component along the 
rails would be desired, which can be planned in a straightforward manner with the method discussed. 

Given a site plan of an unparallel street canyon, the planar anchoring forces can be determined 
graphically by sketching out a series of edge cable arcs. In the following example, ridge cables which 
span through the membrane are present, which introduce new form and force edges to the reciprocal 
diagrams, following the orthogonal construction principle.  
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Figure 10: (left) 2D form and force diagram of the membrane structures. Arrows indicate the direction and the 
magnitude of the reactions, with their force edges in Maxwell convention forming a closed polygon. (right) 

Lifted 3D equilibrium made using the proposed variation of the force density method. 

4.2. Cable supported membrane roof of complex support conditions 

Figure 11 illustrates a cable supported membrane structure, characterized by a complex plan 
arrangement consisting of a circular part and a straight part that are joined at the center. Due to the 
orientation of the supporting structure, the directions of the resultants for supporting cables are fixed in 
the radial direction, which results in variable radial cable forces as indicated by the size of the circles. 
In the straight part, all the support directions are fixed in the perpendicular direction to the path again 
due to the nature of the supporting structure. The proposed graphical method allowed to effortlessly 
solve this complex geometric and support constraints in the projected two-dimensional plane, which 
was then lifted to the three-dimensional equilibrium using the proposed variation of the force density 
method. 

 

Figure 11: (left) 2D form and force diagram of the membrane structures. Arrows indicate the direction and the 
magnitude of the reactions, with their force edges in Maxwell convention forming a closed polygon. (right) 

Lifted 3D equilibrium made using the proposed variation of the force density method. 

5. Conclusion 
This paper introduced a graphic approach to understanding and solving 2D and 3D equilibrium of 
cable supported, uniformly prestressed membrane structures. Frei Otto’s drawing rule was extended 
using reciprocal figures of form and forces, leading to a more comprehensive method to draw 2D 
equilibrium of membrane structures. Furthermore, the isotropic stress state of triangular membrane 
elements was described using graphical construction, providing the equivalence between two different 
approaches based on nodal and natural forces. This discretization method allows for a straightforward 
application of the force density method to membrane elements, which preserves anchor force 
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directions of the 2D equilibrium when lifted into 3D. These toolsets facilitate an integrated approach in 
the design of membrane structures, in which complex project specific geometric constraints can be 
addressed. 

6. Discussion and future work 
A drawback of the proposed method lies in the scaling of forces when lifted from 2D to 3D structures. 
The starting assumption of 2D isotropic stress results in anisotropic stress in 3D due to variations in 
the produced slopes. Isotropic stress can be achieved by updating forces based on the actual geometry 
several times, similarly to the updated reference strategy (URS) and the NFDM [5]. However, this 
iterative procedure loses the important feature of the preservation of anchor force directions. 
Approaches to address this issue are worth exploring in the future. 

Furthermore, this paper limited the graphical representation of membrane forces to isotropic stress 
states. The representation of anisotropic stress states using reciprocal figures is another point of 
interest for further investigation. 
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