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Abstract

Metal-glass grid shells are increasingly being constructed worldwide. However, the efficiency of their
construction can be improved from both structural and assembly viewpoints. Many studies have noted
that aligning the principal stress and principal curvature nets enables the design of grid shell structures
that are both structurally efficient and easy to construct. This is because principal stress trajectories give
a bending-free grid, and a principal curvature net gives a flat panelization. We have previously presented
a novel form-finding method for shell structures that employs NURBS to represent the geometry of a
smooth shell[1]; however, its applications are limited to reinforced concrete shells. The present study
considers how an alignment condition can be incorporated into this previous method because, when two
nets are aligned on a form-finding result represented by smooth surfaces, the smooth surfaces can be
further interpreted into a grid shell. As noted in [2], it is also possible to select conjugate stress and
curvature nets. Therefore, we discuss the alignment of conjugate nets as well. Our contribution lies in
representing the alignment condition through a bilinear symmetric partial differential equation, which
has the same form as the equilibrium equation of general membrane shells (Pucher’s equation). The
newly introduced alignment condition and the equilibrium equation can be simultaneously solved using
a combination of NURBS surfaces and the variable projection method used to solve the equilibrium
equation in [1]. In addition to the introduction of the alignment condition, we also experimentally intro-
duce a boundary-shape optimization strategy, which is anticipated to ’correct’ the impossible boundary
shapes and guarantees the existence of an Airy stress function.

Keywords: Airy’s stress function, form finding, shell structure, bilinear partial differential equation, variable
projection method

1. Previous Works
In architectural design, form-finding is a process of finding structurally efficient shapes. Often, this
entails finding special curves or surfaces that can withstand gravity with no bending action but with only
axial or in-plane stresses. The form-finding of shells is basically analogous to that of a catenary arch:
hanging a gypsum-soaked fabric, drying it until it solidifies, and flipping it gives a reinforced concrete
shell shape that can withstand its self-weight with pure-compression stresses (e.g., Isler’s shell). While
this inverted hanging experiment can be easily simulated digitally (e.g., [3, 4, 5, 6, 7]), the form-finding
of mixed tension-compression membrane shells is known to be a very difficult problem to solve. This
is because a mixed tension-compression stress tensor makes the equilibrium problem hyperbolic, and
the boundary problems of hyperbolic problems are known to be very difficult to solve. Specifically,
boundary information propagates through characteristic lines, which are the asymptotic lines of a stress
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function in the context of form-finding of shells; thus, compatible boundary values that do not contradict
each other between two ends of characteristic lines must be found first. Structural engineers are usually
not trained to solve hyperbolic boundary value problems; the majority of the problems they solve in their
daily work are elliptic, in which any collection of boundary values determines a unique solution. Thus,
very few studies have investigated mixed tension-compression form-finding (e.g., [8, 9, 10]).

In 2022, we developed a stable and robust computational method for solving the mixed tension-compression
form-finding problem [1]. We noted that Chiang et al. [11] were the first to develop a similar method;
however, their method did not converge easily or had a poor convergence rate. We concluded that the
variable projection (VarPro) method [12, 13] proposed more than 40 years ago specifically for bilinear
problems works very well because the equilibrium problem in this type of form-finding problem is a
boundary value problem of a bilinear second-order partial differential equation (PDE).

While our previous method was successful, its extensibility remained questionable because VarPro is de-
signed to solve only bilinear problems, and few bilinear problems are encountered in practice. Moreover,
while this method can solve a continuum shell form-finding problem correctly, it is limited to continuum
equilibrium, and thus, its application is limited to reinforced concrete shells.

Nowadays, metal-glass grid shells are increasingly being constructed worldwide. To use the form-
finding result as the basis for the grid shell geometry, ease of construction must be considered; otherwise,
too many bent glass panels and complex detailing of joints may be required. The current study is a
continuation of our 2022 study and develops a new bilinear second-order PDE called an alignment
condition. It allows the design of grid shells by ensuring that the conjugate stress and conjugate curvature
nets are aligned on a continuum shell form-finding solution. Thus, a continuum shell can be interpreted
as a grid shell that can simultaneously be bending free and covered by planar quadrilateral glass panels.
Thus, the continuum shell form-finding solution can be used to design a metal-glass grid shell that is
structurally efficient and easy to construct.

The new condition can be solved using VarPro in combination with the original bilinear equilibrium
equation. Thus, our extension simultaneously ensures that grid shells are covered by flat quadrilateral
glass panels and are bending-free. This is a preliminary study that continues our paper recently accepted
by Siggraph 2024, which is scheduled to be published in Transactions on Graphics in July [14]. We
have further developed and tested the method through many example problems not considered herein.
Interested readers can refer to [14]. In addition to introducing the alignment condition, as bonus con-
tent, we also experimentally introduce a boundary-shape optimization strategy, which is anticipated to
“correct” impossible boundary shapes and guarantee the existence of an Airy stress function.

2. Introduction
Previous studies have already extensively discussed the alignment of principal stress and curvature di-
rections in shells [15, 16]. Our method differs from previous ones mainly in that it solves two continuum
bilinear PDEs on NURBS surfaces and never explicitly computes two nets. The nets are computed in
a post-process after a form-finding solution is obtained. This is significant because other methods di-
rectly optimize quad meshes, although the eventual meshes are not known in advance. The two bilinear
PDEs constitute an equilibrium equation, Pucher’s equation, and our new PDE or alignment condition.
We have already developed the VarPro computational method for solving the equilibrium equation [1],
which is a bilinear second-order PDE. Because the alignment condition has the same bilinear form as the
equilibrium equation, it can easily be solved within the existing computational framework. Moreover,
our alignment condition can cover conjugate directions alignment as well.

Below, we briefly summarize our proposed alignment condition and present a few variations that provide
different alignments.
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3. Alignment conditions
3.1. Alignment of two real symmetric 2 x 2 matrices

The heart of the idea of the alignment condition is that the condition in which the eigenvectors of two
real symmetric 2 × 2 matrices point to the same direction is equivalent to the condition in which the
product of the two matrices is symmetric. This can be generalized to cases with two real symmetric 2 ×
2 matrices A and B, and one real symmetric positive (semi)definite matrix E. When AEB is symmetric,
one can finds a pair of vectors simultaneously conjugate with A and B. This pair is also conjugate with
e = R90ERT

90.

3.2. Various alignment conditions

3.2.1. Lines-of-curvature alignment

Using the aforementioned finding, we observe that the following condition can align principal stress
(principal stress trajectories) and principal curvature nets (lines of curvature):

h{gjk}H = sym, (1)

where gij is the inverse of the metric tensor (the first fundamental form), h is the Hessian of an Airy
stress function (i.e., 90-degrees rotated stress tensor), and H is the Hessian of the height function of the
shell (i.e., curvature). Imposing this condition results in the strict alignment of the lines of curvature and
principal stress trajectories. Notably, the obtained grid is orthogonal and we have no control over the
actual directions of the principal directions.

As we are computing everything using NURBS surfaces, those matrices are components of tensors
on curvilinear coordinate parameters. in the following, we denote them as (θ1, θ2). To compute the
Hessians, we must use the covariant derivatives instead of partial derivatives. The covariant derivatives
can be computed as

∇ijf = ∂i∂jf − Γk
ij∂kf, (2)

where Γk
ij is connection coefficients, or Christoffel’s symbols of the second kind, which are essentially

geodesic curvatures of the isoparametric lines that can be used to correct the errors due to the curved
coordinates. The connection coefficients can be computed by

Γk
ij = ∂i∂jr ·Gk,Gk = gkigi, {gij} = {gij}−1, gij = gi · gj , gi = ∂ir, (3)

where r, gi, g
k are the position vector (r = (x y)T ), the basis vectors, and the dual basis vectors,

respectively.

3.2.2. Fully conjugate alignment

We also found another alignment condition, which is represented as

h{v̄iv̄j}H = sym, (4)

where v̄i is an arbitrarily prescribed vector. We assume it is normalized on the x−y plane. By imposing
this condition, one of the two directions in the two conjugate nets is aligned with v̄i. Although the
second direction is also aligned between the two nets, we have no control over this direction.
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3.2.3. Approximate bidirectional grid alignment

It is reasonable to let the user of the method sketch a bidirectional reference grid. Assuming that two
guide vectors, v̄i and s̄i, are obtained from a reference grid, a more controlled alignment can be done by
imposing

h{Eij}H = sym, Eij = v̄iv̄j + ϵs̄is̄j . (5)

Assuming a constant ϵ at each point, Eij becomes a constant matrix, Ēij , and the alignment condition
becomes strictly bilinear; this can be solved using VarPro, which was used to solve the equilibrium
equation in [1].

4. Result 1 (solving only for z)

Shell Doubly-conjugate grid

Error

Airy’s stress function

Figure 1: An example of a doubly-conjugate grid is obtained by solving the equilibrium equation and
the alignment condition simultaneously using VarPro.

By imposing one of the alignment conditions, a pair of vectors simultaneously conjugate with h and H is
guaranteed to exist. It can be easily computed by solving a generalized eigenvalue problem (see [2] and
[14]). By tracing the obtained conjugate vectors, one can obtain a grid that gives a basis geometry for a
bending-free grid shell and can be flat-panel-ed. We refer to this grid as a doubly conjugate grid. Fig.1
depicts the doubly conjugate grid obtained on the solution computed using our method. It is noteworthy
that the obtained grid is visually clean and smooth. This is a significant merit in the architectural design
context, although it is difficult to quantify and, thus, excluded from the mathematical discussion.

5. Boundary-shape optimization (experimental)
In [14], we admitted that a few example problems did not pass the post-verification method, also called
the recovery test. In the recovery test, we pin the stress function and compute only the shell. If the
stress function ϕ and the shell z do not contradict each other, nearly the same shell should be recovered.
However, different shells were recovered in a few examples. This is not surprising: the existence of
a solution is not strictly guaranteed because we now have two conditions in two unknown functions
(unlike the original case discussed in [1], where one condition in two unknown functions was solved
and, thus, the authors were unconcerned about the existence of solutions).

Hence, in addition to the simultaneous optimization of z and ϕ presented above, we are currently testing
boundary-shape optimization—that is, solving the same equations by regarding the x and y coordinates
of NURBS control points in addition to z and ϕ as unknown variables. Note that the content in this
section is only preliminary and experimental.

From a theoretical perspective, this boundary-shape optimization is not complex, as we only need to
compute the partial derivatives of the conditions in terms of the x and y coordinate parameters of the
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NURBS control points, just like the z coordinates of the NURBS control points. However, those deriva-
tives are in fact too complicated; thus, we explored a simplified approach.

In the original method, we solved the following conditions (excluding the continuity conditions between
multiple NURBS patches and boundary conditions):

(∇̄ijz)S̄
ij =

√
g

√
ḡ
ρ̄ where g = detgij

1√
ḡ
{(∇̄ijz)Ē

jk∇̄klϕ}|12−21 = 0

S̄11 =
1

ḡ
∇̄22ϕ, S̄

22 =
1

ḡ
∇̄11ϕ, S̄

12 = −1

ḡ
∇̄12ϕ,

∇̄ijf = ∂i∂jf − Γ̄k
ij∂kf,

(6)

where bar-ed symbols are quantities or operators associated with the input shape projected onto the
x − y plane, and ḡij and Γ̄k

ij are the metric tensor and the connection coefficients (Christoffel’s symbol
of the second kind), respectively, that do not change during the computation. The naked g is a metric
tensor of the actual shell (solution) that considers the slope of the shell. In addition, ϕ and z are the two
unknown independent functions to be identified as a solution pair that represents the value of an Airy
stress function and the height of the shell at each point. The stress tensor S̄ij always satisfies

∇̄iS̄
ij = 0 for j = 1, 2. (7)

Because we modify the x and y coordinates of the NURBS control points, we deal with three different
configurations: first, the input shape projected onto the x−y plane; second, the deformed shape projected
onto the x − y plane; and third, the shape of the shell (solution). In the following account, we add a ·̄
and a ·̃ to the symbols associated with the first (i.e., initial) and second (i.e., deformed) configurations,
respectively. Note that “naked” symbols are measured on a shell surface with slopes. In addition, note
that bar-ed symbols are independent of x and y and never change during the computation.

To prevent the interior points from moving freely, we consider stretching the “projected” shape by main-
taining the stress tensor in the initial configuration. When a stress tensor in the initial configuration is
given as S̄ij , it would be worth observing what happens when we maintain it as components of the 2nd
Piola Kirchhoff (PK) stress tensor determined on the initial configuration.

The definition and behavior of the 2nd PK stress tensor on parametric surfaces are summarized in [17]
(page 8). Denoting the “actual” stress tensor (known as a Cauchy stress tensor) in the deformed config-
uration as σ = σijgi ⊗ gj , where gi are basis vectors on the deformed configuration, the 2nd PK stress
tensor is defined as

S = (detF )F−1σF−T , (8)

where F is a deformation gradient tensor. A deformation gradient tensor can convert dX to dx, where
dX is a small vector embedded in the initial configuration and dx is the same vector after the parametric
surface is stretched. Because the vector is “glued” to the surface, their components are maintained during
the deformation, i.e., when dX = dθiGi, where Gi is the basis vector in the initial configuration, then
dx = dθigi with the same dθi, where gi is the basis vectors in the deformed configuration. Thus, we
observe that if we define the deformation gradient as F = gi ⊗Gi, where Gi is the dual basis vectors
in the initial configuration, we get FdX = dx. Using F−1 = Gi ⊗ gi and F−T = gi ⊗ Gi we get
S = SijGi ⊗ Gj = JσijGi ⊗ Gj , where J =

√
detgij/

√
detGij . Therefore, aside from the basis
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vectors associated with the tensors, the relation between the components with upper indices is simple:

σij = J−1Sij . (9)

Thus, returning to the ·̄ / ·̃ / · convention, we set

S̃ij = J−1S̄ij , where J =

√
g̃√
ḡ
. (10)

In the following, we prove that the horizontal equilibrium of this stress tensor is satisfied when

(∇̄ij x̃)S̄
ij = 0, and (∇̄ij ỹ)S̄

ij = 0, (11)

where (x̃, ỹ) represents a position vector of each point after the deformation. This is a beautiful analogy
of the equilibrium equation in z (the first equation in Eq. (6), known as Pucher’s equation). Please also
note that these conditions are strictly bilinear and, thus, can be solved using VarPro.

The horizontal equilibrium in the deformed configuration is

∇̃iS̃
ij = 0, (12)

but the horizontal equilibrium guaranteed to be satisfied is Eq. (7). Hence, we seek a condition to fulfill

∇̃iS̃
ij − (∇̄iS̄

ij)J−1 = 0. (13)

We begin with

(∇̄iS̄
ij)J−1 = J−1(∂iS̄

ij + Γ̄j
imS̄im + Γ̄i

imS̄mj)

∇̃iS̃
ij = J−1(∂iS̄

ij + Γ̃j
imS̄im + Γ̃i

imS̄mj) + (∇̃iJ
−1)S̄ij .

(14)

But, using D
√

detgij = 1/2(Dgαβ)g
αβ

√
detgij , where D is a generic differential operator, ∇̃iJ

−1

expands as

∇̃iJ
−1 =

1

2
J−1((∇̃iḡαβ)ḡ

αβ − (∇̃ig̃αβ)g̃
αβ)

=
1

2
J−1((∇̃iḡαβ)ḡ

αβ) ∵ ∇̃ig̃αβ = 0.

(15)

This further simplifies as

1

2
J−1(∇̃iḡαβ)ḡ

αβ =
1

2
J−1(∂iḡαβ − Γ̃m

iαḡmβ − Γ̃m
iβ ḡαm)ḡαβ

= J−1(Γ̄m
mi − Γ̃m

mi) ∵ (∂iḡαβ)ḡ
αβ = 2Γ̄m

im.
(16)

Therefore, we obtain
∇̃iS̃

ij − (∇̄iS̄
ij)J−1 = J−1(Γ̃j

αβ − Γ̄j
αβ)S̄

αβ. (17)

Thus, having J ̸= 0 and ∇̄iS̄
ij = 0, we observe that the horizontal equilibrium in the deformed config-

uration is satisfied by fulfilling

(Γ̃k
ij − Γ̄k

ij)S̄
ij = 0 for k = 1, 2. (18)
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This condition further simplifies to Eq. (11). Note that the initial position vector r̄ = (x̄ ȳ) satisfies
this horizontal equilibrium.

When the horizontal equilibrium condition is imposed, the interior points do not move freely. However,
because the VarPro method is basically a least squares minimization method, the projected shape overly
shrinks until the area becomes nearly zero. Scaling the stress tensor with J−1 is effective in canceling
out this scaling issue.

Following the above procedure, we can keep using numerous quantities associated with the initial con-
figuration instead of solving the equations on the deformed configuration. Note that, for the alignment
conditions, we must use ∇̃ijz instead of ∇̄ijz because we are aligning the “actual” curvature with the
stress tensor. Thus, the equations to be solved are

J−1(∇̄ijz)S̄
ij =

√
g

√
g̃
ρ̄

1√
ḡ
{(∇̃ijz)Ē

jk∇̄klϕ}|12−21 = 0

S̄11 =
1

ḡ
∇̄22ϕ, S̄

22 =
1

ḡ
∇̄11ϕ, S̄

12 = −1

ḡ
∇̄12ϕ,

∇̄ijf = ∂i∂jf − Γ̄k
ij∂kf,

∇̃ijf = ∂i∂jf − Γ̃k
ij∂kf,

J−1(∇̄ijx)S̄
ij = 0,

J−1(∇̄ijy)S̄
ij = 0.

(19)

Among these equations, the most difficult factor in calculating the gradients is Γ̃k
ij . We do not show the

proof here, but one can rely on the following relation:

DΓ̃k
ij = (∇̃ijDx)(G̃

k · ex) + (∇̃ijDy)(G̃
k · ey), (20)

where D is a generic differential operator.

In addition to these equations, a good boundary fairness/elasticity term that does not interfere with the
horizontal equilibrium is required. To this end, we are currently testing the following conditions on free
edges:

(∇̄ijx)v̄
iv̄j = 0, (∇̄ijy)v̄

iv̄j = 0, (21)

where v̄i is a normalized vector perpendicular to the edge. On a free edge, the stress tensor contains only
a component parallel to the edge, i.e., S̄ij = λv̄iv̄j . Hence, these conditions are already contained in the
horizontal equilibrium and thus do not interfere with it. Because the horizontal equilibrium is equivalent
to Eq. (18), these conditions are further equivalent to

(Γ̃k
ij − Γ̄k

ij)v̄
iv̄j = 0 for k = 1, 2. (22)

Hence, these conditions work as an aesthetic/elastic term that can preserve some curvature of the free
edges.

6. Result 2 (solving for x, y, and z)
Fig. 2 depicts shells, Airy stress functions, results of the recovery test, and doubly conjugate grids
computed using the above-described strategy. Comparisons of doubly conjugate grids obtained with

7



Proceedings of the IASS Annual Symposium 2024
Redefining the Art of Structural Design

Airy’s stress function and an FEA analysis result are also provided. Between (a) a solution obtained
by optimizing z only and (b) a solution obtained by optimizing x, y, and z, the quality of the recovery
test (how well the recovered surface overlays with the solution) was improved in (b), and the number of
red dots, which represent locations where the computation of a doubly conjugate grid is difficult, were
significantly reduced as well. Moreover, the grid obtained with an FEA analysis result overlays well
with the ”theoretical” grid computed with the obtained Airy’s stress function. We will continue this
research in this direction.

7. Conclusion
We derived a new bilinear symmetric PDE that can be used to align conjugate stress and curvature
nets. This PDE has the same form as the equilibrium equation. Fortunately, we have already reported
that the equilibrium equation, which is also a bilinear PDE, can be solved using VarPro in 2022[1]. In
this context, we demonstrated that the two bilinear PDEs can be simultaneously solved using VarPro.
Remarkably, not only are the two nets aligned, but the resulting grid is also visually clean and appeal-
ing. This technique could enable us to design metal–glass grid shells that are bending-free and can be
simultaneously covered by planar quadrilateral glass panels.

Apart from introducing the alignment conditions, we presented an additional result in which bound-
ary shape optimization was experimentally activated. The aesthetic quality of the obtained grids was
improved, and the number of errors in them was drastically reduced. Note that this feature is only
experimental, and we are currently running verifications on numerous example problems.

Our sample implementation of the method explained in this paper, which runs on Rhinoceros ®, is
available on Food4Rhino (https://www.food4rhino.com/en/resource/godzilla-v10).
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Figure 2: Form-finding results of the STARFISH example.
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