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Abstract

Several families of lines can be generated on a curved surface by plotting different properties. These
lines can be classified as either geometrical, or strictly mechanical if the surface becomes a shell struc-
ture. A great deal of previous research about mechanical streamlines has focused on plotting principal
stress lines and select the most meaningful for the definition of a gridshell layout. Here, we introduce
a new typology of mechanical lines: the eccentricity lines, based on the principle of R-Funicularity;
in this work we assess the significance of the generalized eccentricity as a synthesis of principal stress
and bending moments. Even though there is softwares available that currently plots the principal lines,
several integration issues can occur that reflect in drawing the lines. Furthermore, the plotting of eccen-
tricity lines may face additional difficulties due to singularity points that, for example, emerge when the
eigenvalue problem associated to the eccentricity tensor is ill-posed. This study proposes an algorithm
for the regularization and the plotting of eccentricity lines on continuous shells using Grasshopper and
Karamba 3D. The effectiveness of the proposed method will be then demonstrated through the analysis
of several examples of significant shell structures.
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1. Introduction
The shape of a shell has a greater impact on its structural behavior than any other aspect; as a result,
several form finding methods have been created and implemented in order to determine the ”optimal”
structural geometry in static equilibrium with a certain load pattern [1]. Despite efforts to connect the
concepts of form and structure, today’s construction process typically maintains a strict distinction be-
tween architecture and engineering. In the perspective of overcoming this obstacle, lines that illustrates
the principal directions of forces might be viewed as a helpful tool to assist designers in visualizing and
understanding the flow of forces through any continuous shell.

The visualization of force flow on shells is becoming a significant topic in architectural, engineering,
and applied geometry domains, as evidenced by several research. This topic is strictly connected to the
challenge of identifying structures subjected to specific loads with minimal volume while stress levels
do not exceed imposed limits. Nevertheless, the research to date has tended to focus on the plotting
of the principal stress lines, attempting to produce optimal solutions for gridshells or ribbed slabs [2],
[3], [4]; thus, most of the recent findings can only be applied to membrane shell structures. Bending
moments, regardless how small, will always occur when designing and actual surface, and this applies as
well to form found shells, as thickness increases and the ratio between membrane and flexural stiffness
decrease. It is then useful to examine the combined effects of principal membranes forces and bending
moments; therefore, this research focuses on the analysis and the plotting of principal eccentricity lines.
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This topic is strictly linked to the recent definition of Relaxed Funicularity and the analysis of the prin-
cipal directions of eccentricity, introduced by some of the authors in [5]. The purpose of this paper is to
deepen the understanding of these topic by exploring the definition and visualization of the eccentricity
lines fields, as well as providing an actual numerical example of their generation.

2. Theoretical background
2.1. Principal Modulus Eccentricity directions

The concept of Relaxed Funicularity (also known as R-Funicularity or RF), extends the notion of funic-
ularity for continuous shells. The RF was developed to assess the shape quality of a shell under specific
load and boundary condition cases, taking into account the effects of ”small” moments. Determining a
generalized eccentricity (GE) measure and ensuring that it falls within certain eccentricity limits allows
for the quantification of RF.

The generalized eccentricity is defined as the ratio between the generalized bending moment and the
generalized membrane force:

e(θ) =
M(θ)

N(θ)
=

uTMu

uTNu
(1)

Then, for each point of the shell, the GE is a function of θ, which is the angle between the unit vector
u = (cos(θ), sin(θ)) and the base vector e1. In [6] it has been proved that, because equation (1) is a
Rayleigh quotient, the maximum and minimum eccentricities (emax, emin) can be found by solving the
following generalized eigenvalue problem (M− eN)u = 0.

Provided that N is invertible, the local extrema emax and emin can be calculated as eigenvalues of what
we can call Eccentricity Tensor E = N−1M.

The solution is the following:

emin =
1

2

(
E11 + E22 −

√
(E11 + E22)

2 − 4E12E21

)
(2.1)

emax =
1

2

(
E11 + E22 +

√
(E11 + E22)

2 − 4E12E21

)
(2.2)

It is important to underline that, although N and M are symmetric, in general the tensor E is non-
symmetric, unless N and M commute. There are two key differences between the eigenvalue problem
for non-symmetric and symmetric tensors: the eigenvalues of a non-symmetric tensor can assume com-
plex values and, in general, the eigenvectors of a non-symmetric tensor are not perpendicular to each
other.

These differences can create several issues in the process of defining and representing the Principal
Eccentricity (PE) vectors. In order to fix these problems, the authors believe it is more helpful to define
the principal eccentricity directions using the angle values θmin and θmax.
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θmax =
1

2

[
arctan

(
E12 + E21

E11 − E22

)
+ arctan

(√
4E12E21 + (E11 − E22)2

E12 − E21

)
− π

2

]
(3.2)

In contrast to the mechanical meaning of the sign of N(θ) (tension vs compression), the sign of M(θ) is
entirely conventional. Therefore, the sign of e(θ), which determines whether the shell stresses’ resultant
is located above or below the shell’s middle surface, is irrelevant when measuring the R-Funicularity.
The authors reckon that the Modulus Eccentricity (ME:=|e(θ)|) is a more significant parameter.

The concept of maximum Modulus Eccentricity (ME) has been introduced in [6], and also applied to
shell’s shape optimization in [7]. In this paper we choose to define both the maximum and minimum
ME directions, and we use them to plot the correct principal ME Lines.

Here we summarize the general criteria we followed to determine the right directions. If we define:

Emin,Emax = min(|e(θ)|),max(|e(θ)|) (4)

Θmin,Θmax = argmin
θ

(|e(θ)|), argmax
θ

(|e(θ)|) (5)

the solution is:

Emin,Θmin =


|emin|, θmin if det(N) > 0& |emax| ≥ |emin|
|emax|, θmax if det(N) > 0& |emax| < |emin|
0, θ0 if det(N) ≤ 0

(6)

Emax,Θmax =


|emax|, θmax if det(M) > 0& |emax| ≥ |emin|
|emin|, θmin if det(M) > 0& |emax| < |emin|
∞, θ∞ if det(M) ≤ 0

(7)

where:

θ0 = βM ± 1

2
arccos

(
−Tr(M)

∆M

)
(8)

θ∞ = βN ± 1

2
arccos

(
−Tr(N)

∆N

)
(9)

and (emin, emax), (θmin, θmax), are calculated by means of the equations (2.1,2.2), (3.1,3.2), respectively.

Is is fundamental to highlight that:

• If det(M) ≤ 0, there are two different values of θ such that e(θ) = 0, evaluated using equation
(8). Therefore, there are two Minimum ME directions, symmetric with respect to βM , and two
corresponding values of Θmin = θ0.

• If det(N) ≤ 0, there are two different values of θ such that e(θ) = ∞, evaluated using equation
( 9). Therefore, there are two Maximum ME directions, symmetric with respect to βN , and two
corresponding values of Θmax.
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For a complete investigation of the generalized eccentricity and the ME’.s formulation, refer to the
author’s previous work [8] and [9].

2.2. Streamlines generation

Usually related to fluids flow, streamlines are a family of curves whose tangent vectors constitute the
velocity vector field of the flow. In a structure, these lines can show the flow of different force fields by
connecting the projections of principal vectors directions (namely the eigenvectors) for a collection of
points across the structural body. Multiple vector fields, such as principal stress, moments, or eccentric-
ity, can be represented.

Despite the development and application of numerous tools, the most accurate process for the generation
of streamlines is still up for debate.

The streamline tracing process has to begin with a seed location for each line; then it evaluates the next
line’s point following the direction of the tangent vectors. The process of selecting the right seed points
to generate significant streamlines is called “seeding”. Subsequently, the principal directions and values
are estimated for the centroids of the input mesh, since the vector field to be investigated is derived from
a finite element analysis; data interpolation must be handled in the streamlines generation process in
order to compute the data for any point. The last step is the actual integration of the vectors to define
the streamline path in both directions. The most commonly used integration methods are Euler’s and
Runge-Kutta’s.

It is important to note that, because its directions can point both forward and backward simultaneously,
a vector field resulting from a FEA analysis is not exactly the same as a conventional field. This prob-
lem becomes more challenging when principal eccentricity lines are generated, due to the two major
issues mentioned in the section above: the ME vectors are not perpendicular to each other, and both the
maximum and minimum directions might bifurcate, resulting in multiple principal directions.

3. Objectives and methods
The specific objective of this study is to define the Modulus Eccentricity vector field for any given shell
structure, and to visualize its path by investigating the plotting of its streamlines.

In order to accomplish our goals, a script was created with Rhinoceros and Grasshopper 3D [10]; the
structural analysis is performed using the Grasshopper plugin Karamba3D [11], which allows the prin-
cipal directions to be evaluated. Based on the idea of visual scripting, Grasshopper enables the devel-
opment of user subroutines that are adapted to the particular design context. This software is highly
customizable and flexible, making it suitable for research purposes.

This study is unable to encompass the entire streamline tracing process, so the article will focus on the
proper determination of the field and the investigation of the seeding phase, while the Karamba3D “User
streamlines” component will be used for the integration of streamlines. The authors intend to implement
the algorithm in the near future to incorporate more efficient methods of interpolation and integration.

4. Generation of Modulus Eccentricity Lines (MEL)
The outline of the proposed procedure for the generation of the ME lines is described by the flowchart
in Fig. 1.

To characterize the studied design domain, perform the FEM analysis from which structural data is
extracted, and develop a suitable seeding plan, it is essential to define a proper mesh topology. The use
of Grasshopper allows for the definition of the surface either using a mathematical function or through a
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(see eq. 6 and 7) 

Figure 1: Flowchart of the proposed visual script.

form-finding method, employing tools such as Kangaroo; just altering the design base parameters allows
for the retrieval of multiple shapes from the same script.

Once the geometry is set, it has to be converted into a triangulated mesh. It is essential to calibrate the
mesh’s regularity and density during this phase because the output is highly related to the quality of the
triangulation, yet a high density mesh will result in a time-consuming computational procedure. The
mesh is then turned into a shell by Karamba3D. Simultaneously, the surface and mesh data are stored in
a separate cluster to extract the coordinate vectors u, v and n, that will be later used to generate the ME
vectors. Loads, cross section and supports are then defined; the Karamba3D script assembles the model
and performs the FEM analysis.

Through the “Shell forces” component, the algorithm evaluates N and M in local directions, and de-
fines their values as Nxx, Nyy, Nxy and Mxx,Myy,Mxy. The finite element analysis performed with
Karamba3D outputs the principal stress values in every centroid point of the mesh, but the “User stream-
lines component” requires a vector for each node of the model; therefore, the generation of ME lines
has to begin with some sort of data interpolation, which involves computing the data for every vertex of
the mesh. This research uses a custom GhPython component to link each vertex with the adjacent mesh
faces and average the values of the elements which connect to that node.

The algorithm assembles the N and M matrices and computes the N−1M matrix, thus defining the E

tensor. Then, a GhPython component was developed to evaluate the maximum and minimum modulus
eccentricities: the component calculates Emin,Emax,Θmin,Θmax according to ( 6) and ( 7). The compo-
nent’s output is a list of angle values, each corresponding to a node of the model.

At this step, it is important to note that the bifurcation of the ME lines is determined by the relative
doubled Θ values. Because there is currently no way to divide the lines during the integration process,
four lists of angles are grouped independently for each node: two for the minimum and two for the
maximum modulus eccentricity.

After evaluating the angle, the script computes the following operation to convert them into vectors:

Emax = cosΘmaxu+ sinΘmaxvp Emin = cosΘminu+ sinΘminvp

Being u the coordinate vector aligned with the global X direction and vp = u× n.
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The vectors are then normalized and used as input for the User Stream line component. A key aspect
to consider at this stage is that the order of the outputted vectors corresponds to the enumeration of the
mesh generated by Karamba3D, whereas the new component stores the points in an alternative sequence
determined by the shell element. Therefore, the vectors need to be renumbered to match the right order;
this can be achieved by using “Find similar member” component to reassign the item to a new ordered
list.

4.1. Seeding

The plotting of ME lines, as for any other family of streamlines, starts from a seed point; the algorithm
then estimates the movement direction from the vector field and iteratively searches for the next point.
Generally, the goal of seeding is to identify a set of sources from which a uniformly spaced lines field
can be built for further processing and selection. In this paper, seeding is also investigated in order to
achieve a meaningful distribution of lines, highlighting the varying flow of forces.

5. Numerical examples
5.1. Shapes definition

To test the effectiveness of the proposed algorithm, this paper analyzes two kinds of forms: a parametric
shape described by an analytical function, and a form-found one, defined using Kangaroo2.

The first shape was selected based on how simple it was to define and parametrize it in Grasshopper. It
has additionally been examined earlier for form optimization [12], and some of the authors have also
used it to assess the efficacy of objective functions derived from the ME in [13].

The following equation describes a parametric parabolic cylinder-shaped surface:

z = 4fx
lx − x

l2x
with f = a0 + a1y + a2y

2 (10)

where we define a0, a1 and a3 as:

a0 = c1 a1 = 4
c2 − c1

ly
a2 = 4

c1 − c2
l2y

We set lx = 6m and ly = 12m and we investigate the design space generated by adjusting the c1 and c2
parameters. The final surface to be analyzed was selected from the resulting set of shapes; the relative
parameter values are c1 = 6 and c2 = 3.

A form-found process in Kangaroo2 is used to determine the second shape. The surface is generated
from a square area with sides of 20 m, using a 1x1 m mesh; the anchor points are defined using the four
vertices of the mesh and their two adjacent points; the rest length of the springs is equal to the lines’
starting length; and each node of the mesh is loaded with a vertical upward force of intensity 1N. The
form-found shape is a velaroidal shell with a maximum heigth of 8 m.

5.2. Analysis of Generalized Eccentricity

The parabolic cylinder-shaped shell is pinned on the longer sides; the constraints of the velaroidal shell
coincide with the anchor points defined in Kangaroo. The material of both shells is set to concrete 25/30,
with a cross-section’s thickness of 5cm. A linear static analysis of the structures, subject to self-weight
load and an in plan uniform vertical load of 5kN

m2 , is then performed using Karamba3D.
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As stated in Section 4., the N and M values and directions resulting from the FEM analysis are used
to calculate the GE of the given shell structures; then, a Grasshopper cluster is utilized to plot the
eccentricity distribution on the surfaces.

Both the |Emin| and |Emax| are plotted by the algorithm. The data was divided into three sets in order to
make it more manageable: x < h

6 , h
6 < x < h

2 and x > h
2 . We remark that the section can be considered

R-funicular for eccentricity values less than x < h
6 . A comparison between the GE values and vectors

is shown for both shapes in Figures 2 and 3.

With the exception of two minor regions of the first case, where they nevertheless stay within half
of the section’s height, we can see from the eccentricity distribution that the minimum eccentricities
entirely fall inside the mid-third of the section. As a result, it is reasonable to conclude that graphing the
maximum modulus eccentricity is sufficient to determine R-Funicularity of the structure.

When comparing the results for the first shape, it becomes clear that the dark blue regions (where the
eccentricity exceeds the boundaries) match precisely the locations of the vectors’ field where the direc-
tions of maximum ME split. On the other hand, it can be observed that the directions of the second shell
never bifurcate; this indicates that det(N) > 0 for each point, thus N(θ) is never equal to 0. Moreover,
the areas where the vectors of minimum eccentricity bifurcate are found to be funicular; along these
directions, there are indeed one or two different values of Θ such that M(θ) = 0 → e(θ) = 0.

The current approach proves to be quite effective since it enables to directly identify the non-funicular
zones and the orientations along which the structural shell must resist bending.

Figure 2: Results of the analytically defined shell: (a.1) |Emax| vectors and (b.1) values; (a.2) |Emin|
vectors and (b.2) values.

Figure 3: Results of the form-found shell: (a.1) |Emax| vectors and (b.1) values; (a.2) |Emin| vectors
and (b.2) values.

5.3. ME lines

The ME lines network is generated through the “User stream lines” Karamba3D component, utilizing
the evaluated ME vectors as inputs. Initially, an arbitrary seeding scheme is defined: the mesh vertex are
extracted, culled with a random pattern and then used as seeds (Fig. 4)

Plotting the lines using Θ angles eliminates some of the issues that arise when the eigenvalue problem
associated with the eccentricity tensor is not well-posed. However, the plotted lines appear confused and
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Figure 4: |Emin| (red) and |Emax| (blue) lines for both shell structures.

still exhibit some irregularities, such as loops, intersecting and overlapping lines.

The blackbox approach of Karamba3D tracer does not allow for meaningful intervention in the inte-
gration algorithm; hence, focusing on seeding appears to be the most effective strategy to improve the
generation of the lines. The current section of the paper will thus present the investigation of several
different seeding schemes. Seeding can be arbitrary or guided; arbitrary approaches might be random
or dependent on other regular patterns on the input mesh, while guided methods establish a connection
between the seeding strategy and meaningful numerical values [3].

As an arbitrary strategy, we investigate the generation of the lines using as seeds a regular grid of points
based on the UV parametrization, and the surfaces’ naked edges.

For the guided approach, we relate the seeding strategy to the mechanical properties of the structure
using the shells’ isolines. We use the points of: the ∆β isolines, being ∆β = βM − βN the relative
angle between M and N eigenvectors; the |E| isolines; the Gaussian curvature isolines. The tables in
Fig. 5 and 6 summarize the resulting lines’ layouts.
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Figure 5: Seeding investigation for the analytically defined shell.

In general, relying solely on seeding analysis is not sufficient to obtain flawless lines. However, patterns
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Figure 6: Seeding investigation for the form-found shell.

can be identified, especially in lines of maximum ME, which can be useful for understanding directions
that may require structural reinforcement, such as concrete ribs.

The first shape’s lines appear to be highly uneven in all circumstances, particularly for the minimum ME
lines; this is most likely due to the surface’s negative Gaussian curvature. However, it is still possible to
trace a general path through the maximum ME lines: a ring stress in the center, which causes the lines to
loop, and two crossing lines on the sides. The cases associated with low beta values tend to be the most
clear.

The lines observed in the form-found shell generally appear more regular, owing to the shape’s Gaussian
curvature always positive and the membrane force never equal to zero. While the maximum ME lines
may indicate the possible orientation of reinforcing ribs, the flow of the minimum ME lines may be more
interesting: in fact, the locations where the lines bifurcate correspond to the points where the bending is
equal to zero, allowing elements with a very small cross section to be placed along these directions. In
this case, the seeding scheme that utilizes points on the edges yields the best results.

6. Conclusions
This work defined the principal eccentricity lines associated with vectors of minimum and maximum
eccentricity modulus, that are useful to analyze the combined effects of principal membranes forces and
bending moments. Subsequently, a method was presented to generate the ME lines on a shell using
Grasshopper3D. This process utilizes Karamba3D to integrate the vectors and generate the ME lines,
but the authors plan to implement it in the future to directly manage the integration phase through the
script. This research then illustrated two examples of line generation, plotting them on two shells — one
obtained from an analytical formula and one from a form-finding process. Finally, an analysis of seeding
was presented, comparing the lines generated using different starting schemes. This investigation proved
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that ME lines are interesting not only mechanically, but also aesthetically. They could therefore be
used as a base scheme for inserting reinforcements or stiffening elements, as well as to define the final
geometry. The goal of future research will be to further explore these possibilities.

Figure 7: Example on regularized ME lines in the form found shell.
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