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Abstract

The building sector is aiming for carbon neutrality and the field of structural engineering is witnessing
a surge in regulatory requirements. In order to meet environmental policies and with their strong im-
pact on building carbon footprints, structural designers have to update their methods. It is therefore of
great interest to familiarize them with Life Cycle Assessment (LCA) principles and integrate efficient
LCA tools to their workflow, and avoid having to refer exclusively to external environmental practices.
This industry-driven research delves into the challenges faced by structural engineers and explores key
changes and steps that can be implemented to reduce the environmental impacts of projects without
adding to the workload. A first challenge lies in the diverse array of working habits and tools used by
engineers within the same office, and the need to propose solutions tailored to all of them. Addition-
ally, the dynamic nature of projects, evolving at each design stage, means LCAs are usually deferred
to final stages to avoid time inefficiencies, meaning building designs are fixed and no changes can be
made. Solutions implemented and presented range from the development of user-friendly LCA plug-ins
directly integrated to in-house tools, to the creation of early design tools for real-time approximation
of embodied GHG emissions, making for rapid verification of computed results, as well as facilitating
decision-making and impact assessment. For this purpose, the research presents a Machine Learn-
ing methodology that could systematically gather in-house data and leverage knowledge from these
databases, to enable a broader understanding of project footprints and help bridge the data gap in the
building industry. By examining both challenges and opportunities experienced in their every day work,
this study aims to assist structural engineering practices in meeting current environmental objectives.
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1. Introduction
Embodied emissions (EE), and in particular the production stage of structural components, represent
a rising proportion of building whole-life emissions. Structural engineers have a key role to play in
reducing building carbon footprints (CF), and taking the right decisions from early stages onwards has
become part of both their mission and responsibility. On the one hand, they are confronted to public
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measures and regulatory frameworks with increasing limits on EEs. On the other hand, they are exposed
to private initiatives, with the development of assessment tools and in-house strategies sensitizing to
environmental concerns. In order to be impactful, research has highlighted the need for tools to be
straightforward to use, well integrated in the workflow and exempted of increasing any user workload
[1]. Moreover, the tools should allow users to understand the impacts of their design choices on building
emissions and indicate recommended changes [2]. In this paper we discuss the specific challenges and
opportunities observed within the structural engineering consultancy Bollinger + Grohmann (BG) and
solutions developed to answer them.

2. Environmental strategies
Bollinger + Grohmann (BG) has initiated multiple actions and environmental strategies to reduce the
impact of its projects on climate change. First, it has set up a Life Cycle Analysis (LCA) core team,
responsible for deploying mitigation strategies for the company. The team assembles one representative
per office responsible for sharing information internally, via intranet, workshops, lunchtalks and surveys.
Second, it has established a list of practical in-house measures towards lean design, low carbon and zero
waste as well as checks to help employees in their decision-making. Third, LCA calculations have be-
come mandatory within the company for all new projects and with an increasing level of detail as the
planning process evolves. The goal is to familiarize all employees with the LCA process and to make
them aware of their impact on projects. Fourth, tools have been developed in-house and integrated to the
existing workflow, allowing to track and optimize building structural EEs. The BG LCA Spreadsheet
has been developed as a quick and pragmatic excel tool for easy calculation of the LCA of structures.
It is aimed at practising structural engineers within BG, doesn’t require any expert knowledge on LCA
and allows to compare 4 design alternatives. Calculations are provided on a summary sheet and can be
used directly to communicate with clients and architects. Moreover, BG LCA plug-ins integrating all
the spreadsheet functionalities have been developed for RFEM, Rhino and Grasshopper and allow to
retrieve the LCA for any open 3D model. Assessments are linked to a colour map, allowing to visual-
ize emission hotspots on the models and to track the impacts of material and geometry changes. Fifth,
all BG LCA tools have been linked to an in-house database keeping track of results. The database is
expected to act as a feedback loop by learning from projects, experiences and trends. It lists geometri-
cal and material information as well as project descriptions, including project number, name, location,
phase, date, author, sector, type, storeys, basement, foundations, groundfloor, superstructure, typical
span, liveload, environmental certification scheme and seismicity. Finally, importance has been given
to promoting communication about sustainability and structural EEs externally. by explaining concepts,
comparing alternatives and discussing options with clients, as well as in the industry, by taking part in
assemblies, conferences, research projects and journal publications.

3. Challenges and opportunities in structural engineering
3.1. Tools

Research facilitating the assessment of EEs in the building industry focuses primarily on developing
calculation tools such as tables and spreadsheets, or plug-ins for 3D-models, with different levels of pre-
cision and focus [3]. Tables involve manually inserting volumes and materials retrieved from building
plans, models or tender documents for the calculations [4, 5, 6, 7, 8]. They are increasingly difficult
to use as the complexity of projects increases and their manual inputs are prone to error. Finally, since
they aren’t integrated to pre-existing structural tools, they constitute an extra step in the workflow and
increase the workload. Plug-ins compute the EEs at different stages based on volumes and materials
automatically retrieved from 3D-models [9, 10]. Once building geometries and materials are defined,
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LCAs are updated at every design change. Their colour maps facilitate the comparison of design alter-
natives and the visualization of results and design impacts. However, they require having access to a 3D
model and mastering tools and design parameters.

In general, calculation tools allow thorough and precise calculations, but require making an inventory
of all building components, or defining material attributes in the models, a time-intensive task which
can last multiple days, increases the workload and generates costs [1, 11]. To avoid having to repeat
this task, and given the dynamic nature and regular changes in projects, LCA is often deferred to final
stages and rarely used to inform the design. Moreover, they are usually run by external consultants [12].
While this brings benefits, such as impartiality and expertise, drawbacks include low integration with
project goals, limited customization, and delayed feedback as well as a reduced sense of accountabil-
ity for sustainability outcomes, as stakeholders feel less responsible when not directly involved in the
assessment.

3.2. Data

Databases compiling information on real-world buildings and carbon emissions originate from public
and private entities [13, 14, 15, 16, 17, 18, 19]. They are essential to improve our understanding of
current emissions, targeted emissions and to make recommendations from their analysis. Despite their
growing number, databases remain rare, and data on EEs is largely lacking. Algorithms and design tools
trained on real-world building data can serve a wide range of applications. Unfortunately, in the case of
EEs, applying complex algorithms and Machine Learning (ML) to existing databases is hindered by the
rarity and lack of consistency of their data, resulting from three main factors. First, the cross-sectoral
and international nature of EEs, which makes it hard to define assessment boundaries. Second, the
sensitivity of the EE values to the calculation hypothesis, which means values retrieved for an identical
building vary greatly depending on the building parts and life cycle stages included [20, 21, 22]. Third,
the non-uniformity of features assembled in the database, which makes it hard to compare and combine
them [2, 23].

3.3. Opportunity

Building typology and contextual information, available in design briefs at early stages, provide infor-
mation which can be leveraged using ML models, to estimate building EEs. Given the high sensitivity
of LCA values to calculation hypothesis, and given the fact that building regulations and Environmental
Product Declaration values are constantly updated, there is an interest in developing a robust model that
can be trained on different databases and units, optimized for different evaluation metrics and tailored
to meet different thresholds. The ”soft feature approach” was developed within BG to investigate this
opportunity [24]. It is a ML method which can be trained on databases of existing buildings to pre-
dict the EEs of new projects from a small input set of features easily accessible at early design stages.
The method can adapt to different databases and provides robust results as a result of integrated feature
selection, diverse regression models and blending techniques [25].

4. Data-driven methodology
In this section, the potential of the ”soft feature approach” for predicting the EEs of real-world buildings
is tested on existing BG projects.
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4.1. Steps

First, the algorithms are trained on a database compiling features of existing buildings and calculated
EEs. At the time of writing, the BG database lists too few projects to train the underlying algorithms
of the methodology. The algorithms are therefore trained on another database with similar content
(boundaries, stages, units), the Price & Myers database [26]. Second, three building structures are
selected from the BG database to serve as test samples. Their structural EEs have been calculated by
structural engineers using the BG LCA spreadsheet. The spreadsheet also attributes a Structural Carbon
Rating Scheme (SCORS) to the projects, consisting in a letter [A - G] per step of 50 kgCO2e/m2, and
including A1–A5 emissions of the primary structures (superstructure and substructure). SCORS allow
to rank projects and provide sufficient EE information for early design stages [4]. Third, the EEs of the
3 samples are predicted using only their descriptive features listed in Table 1 as input for the pre-trained
algorithms. When features are missing, mean values and modes are used. Fourth, the predicted values
and predicted SCORS rating are compared to groundtruth values. Fifth, SHapley Additive exPlanations
(SHAP) methods are used in combination with the trained algorithms to explain feature impacts on
predicted values [27].

4.2. Results

Predictions and explanation plots are presented in this section to evaluate the potential of the methodol-
ogy in comparison with standard LCA tools. Observations and values serve as indicators and should not
be taken as absolute values.

Table 1: Input features, predicted EEs and SCORS ratings for 3 Sample Structures in the BG database.

Features Structure A Structure B Structure C
Floor Area [m²] 13187 3330 120
Storeys [-] 3 2 5
Year [-] 2023 2023 2023
Value [m£] 11 11 11
Stage 5 5 5
Sector Educational Educational Residential Single
Type New Brownfield New Greenfield New Brownfield
Foundation Raft Piled Ground Beams Raft
Basement None None Full Footprint
Ground Floor Ground Bearing RC Ground Bearing RC Other
Cladding Other Other Other
Superstructure Timber Frame Glulam-CLT Other Timber Frame Glulam-CLT
Fire Rating 60 60 60
Passive No No No
Embodied Emissions value ∼ SCORS
Prediction [kgCO2e/m

2] 240.46 ∼ C 294.68 ∼ D 444.72 ∼ G

Groundtruth [kgCO2e/m
2] 195.53 ∼ B 223.94 ∼ C 396.62 ∼ F

As indicated in Table 1, for all 3 structures, predicted EEs are far under groundtruth. However, the
order of structure EEs, from less emissive to most emissive, corresponds to groundtruth order, and the
predicted SCORS ratings systematically fall 1 category short of groundtruth ratings. The negative bias
could be explained by the differing properties such as location, company or building regulations between
projects in the Price & Myers database, and projects in the BG database.
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Figure 1: The value predicted for Structure A (f(x) = 240.5 kgCO2e/m2) is lower than the average
dataset value (E[f(x)] = 305.6 kgCO2e/m2), The 13187 m2 ”Floor Area” generates the strongest struc-
tural EEs decrease (-162.16 kgCO2e/m2), indicating high floor areas tend to reduce structural EEs.
The ”Glulam-CLT Timber frame” generates the strongest EEs increase (+74.92 kgCO2e/m2). In the
training database such superstructures have very low absolute EEs (kgCO2e) and very high EE rates
(kgCO2e/m2), indicating they might be preferred for smaller-scale projects.
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Figure 2: The value predicted for Structure B (f(x) = 294.7 kgCO2e/m2) is lower than the average
dataset value (E[f(x)] = 305.6 kgCO2e/m2), Again, the 3330 m2 ”Floor Area” generates the strongest
EEs decrease (-19.5 kgCO2e/m2). The ”Educational” Sector generates the strongest EEs increase
(+28.69 kgCO2e/m2), indicating this activity might induce higher structural EEs than other sectors in
the training database.
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Figure 3: The value predicted for Structure C (f(x) = 444.7 kgCO2e/m2) is higher than the average
dataset value (E[f(x)] = 305.6 kgCO2e/m2), The ”Other” ground floor generates the strongest EEs
decrease (-24.9 kgCO2e/m2). The ”Glulam-CLT Timber frame” generates the strongest EEs increase
(+75.53 kgCO2e/m2), followed by the ”Full footprint” basement and 120 m2 ”Floor Area”.
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Feature impacts on predicted values are explained on Figures 1, 2 and 3. The waterfall plots display the
SHAP explanations per feature for the 3 studied structures. SHAP explanations indicate the magnitude
of the impact of features on the predicted value, and are ranked in descending order of importance [28].
Binary values to the left of the features indicate the presence (1) or absence (0) of these features in the
building. Their positive (red) or negative (blue) contribution moves the target value from the average
dataset value (E[f(x)]) or ”expected model output”, to the predicted value (f(x)). As commented in their
captions, feature impacts on the plots are coherent with common knowledge and database content.

Despite inaccurate predictions, results from this case study prove the potential of the methodology. Pre-
dictions and explanations are obtained instantaneously, using only soft features as input. Furthermore,
satisfying results are obtained despite having had to train and test the algorithms with data from two
different databases. Predictions retrieved from algorithms trained and tested on the BG database, once it
contains enough projects, should be more accurate.

4.3. Tool implementation

The envisioned implementation of this methodology, illustrated in Figure 4 is a two-step tool that can
first learn from an input database, and further predict emissions for new projects. Applications in the
first step include providing a global analysis, feature comparison and explanation of overall impacts.
Applications in the second step include real-time approximation of EEs based on user-defined features,
allowing early and hands-on access to LCA, as well as comparison, explanation and recommendation of
design changes. Trained on private data, the tool has direct applications for design and decision-making.
Trained on a national database, it can help inform policy models and mitigation strategies. In both cases,
the tool performance is entirely dependent on the quantity and quality of the learning data, which is
still largely lacking. The setup aims for rapidity and simplicity and limits exposure to mistakes. This
should motivate users to assess their buildings at every stage, and compare multiple designs. Rather than
calculating a precise value, it returns values within a tolerance range. It does not aim to replace precise
standard EE calculations which should always be made at later design stages.

5. Conclusion
In order to meet environmental policies and with their strong impact on building embodied emissions
EE, structural designers have to update their methods. In this paper, we presented steps initiated by
Bollinger+Grohmann for this purpose, including an internal LCA management and strategy, tables and
plug-ins for EE calculation and a database to track building EEs and establish future budgets and bench-
marks. Based on the challenges observed on existing tools and data and on the opportunities presented
by Machine Learning for leveraging knowledge from real-world data, the ”soft feature approach” was
then introduced. It is a ML method which can be trained on databases of existing buildings to predict
the EEs of new projects from a small input set of features accessible at early design stages. The poten-
tial of the methodology was confirmed when using it to predict and explain the EEs of three building
structures from BG. Tool implementations include in-depth analysis of existing building databases, and
tailored analysis of EEs and feature impacts on new projects. Ultimately the research aims to strengthen
our capacity to generate novel designs in the field of architectural engineering via the valorization of
data available, and motivate collaboration between governmental agencies, public and private entities
for gathering and analyzing data efficiently.
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Figure 4: Tool implementation - (1) Learn from a building database to calibrate methodology and un-
derstand feature impacts on emissions. (2) Predict emissions for new projects with methodology and
explain individual feature impacts.
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