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Abstract 
Funicular structures allow the design of highly material-efficient, slender structures. At the same time, 
the requirement of funicularity eliminates the designer’s freedom in forming the structure, and limits 
potential areas of application. The apparent contradiction between free-form design and funicularity can 
be resolved by considering structures with complex topologies. This work focuses on ‘coupled curves’: 
structures composed of two, planar, curvilinear components connected by a sequence of coupling 
elements (cables, hangers, columns). Coupled curves can be considered as conceptual models of several 
bridge types and of beams with external post-tensioning. The traditional design approach to coupled 
curves is to choose the shape of one curve (e.g. the deck of a bridge) freely or as dictated by functional 
requirements, and to design the shape of the second one (e.g. pylon of a harp bridge) as dictated by 
funicularity. This paper explores a more advanced problem: the goal is to construct a set of coupling 
elements, which makes two planar curves with arbitrary prescribed shapes, and loads funicular. The 
problem is formulated as an initial value problem with the distribution of coupling members and internal 
forces in all members as unknowns. With appropriate choice of initial conditions, both endpoints of the 
curves can be prescribed by the designer. The proposed method makes it possible to shape the two main 
components of coupled curves freely, while preserving funicular state in all components.  

Keywords: Form-finding, free-form design, funicular structures, external post-tensioning, initial value problem, boundary 
value problem 

1. Introduction 
Funicular structures balance their external loads via pure tension or compression forces, which allows 
the design of highly material-efficient, slender structures. However, the shapes of funiculars are strongly 
connected to the external loads.  Aesthetic, functional, and technological requirements often contradict 
the requirement of funicularity, which leads to the design of structures under significant bending. By 
considering structures with complex topologies, it is possible to design structures that preserve funicular 
state in all members regardless of their shapes. Well-known examples include trusses, and network arch 
bridges. As we will show in this work, ‘coupled curves’ – structures composed of two planar curvilinear 
beams and dense sequence of non-intersecting connection elements such as hangers, cables, or columns 
also enjoy this beneficial property, at least for one distribution of the loads.  

Coupled curves can be regarded as conceptual mechanical models of several bridge types (e.g. arch, 
cable-stayed, harp, and suspension bridges), and beams with external post-tensioning. Our results 
therefore reveal new design methods for these structures, many of which are not only masterpieces of 
engineering design, but also iconic elements of natural or man-made landscapes and means of artistic 
expression. In case of the most popular bridge types there exists thorough literature on the optimisation 
of shape (Farshad [1], Zhang et al. [2]). Literature about the set of achievable shapes of those structures 
is a less studied topic, but as Zwingmann [3] explains, a topic of increasing significance.  
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A discrete version of form-finding of coupled funicular curves has been studied by Todisco et. al. 
Motivated by application to externally post-tensioned beams, those authors investigated the situation 
when the shape of a polygonal structural member is prescribed along with the directions of connection 
elements at the vertices [4], [5]. A graphic statics-based method was developed for the form-finding of 
the second polygonal member.  

This work presents a different approach to the problem in two different aspects. Firstly, we consider a 
continuous limit, in which the connecting elements are dense, and the polygonal member becomes a 
smooth curve. Secondly, the goal of the present paper is to consider two members with prescribed shapes 
along with their loads, and to construct an appropriate sequence of connection elements, such that both 
curves become funicular. In addition, the proposed method allows the designer to prescribe the locations 
of the initial and terminal points on the two coupled curves. The significance of this approach lies in that 
the two curves are often the primary functional elements of these structures, which are also visually 
more prominent than the connectors. 

From the equilibrium equations of infinitesimal pieces of the curves we obtain an initial value problem 
(IVP) composed of a system of three ordinary differential equations, with unknown functions 
representing the distribution of connection elements and internal forces in all members. The feasibility 
of this approach is illustrated by examples of numerical solutions produced by a MatLab-based solver. 
We also classify all mathematical issues, which occasionally lead to failure of the method.  

 

 

Figure 1: A) notation and parametrization of curve Γ; B) Free body diagram of an infinitesimal segment of curve 
Γ in funicular state. 

2. Equilibrium equations of coupled funiculars 

2.1. The concept of a funicular curve 

Consider a Cartesian coordinate system 𝑥𝑧 and a curve Γ: 𝐜(𝑥) = (𝑥, 𝑐(𝑥)) parameterized by the 𝑥 
coordinate of its points, representing the axis line of a thin (curved) structural member. Let 𝐩(𝑥) =
(𝑝௫(𝑥), 𝑝௭(𝑥)) be a function representing distributed load of the structure. We say that a finite segment 
of curve Γ given by 𝑥 ∈ [𝑥଴, 𝑥ଵ] is funicular for the load 𝐩 if there exists a scalar function 𝐶(𝑥) such 
that any part of the curve is in static equilibrium under the external load 𝐩, internal force function 𝐍(𝑥) =
[𝐶(𝑥), 𝐶(𝑥)𝑐′(𝑥)] and two external forces including  𝐶଴ = −[𝐶(𝑥଴), 𝐶(𝑥଴)𝑐′(𝑥଴)]  at point 𝑥଴ and 𝐶ଵ =
[𝐶(𝑥ଵ), 𝐶(𝑥ଵ)𝑐′(𝑥ଵ)]  at point 𝑥ଵ representing support reactions at the terminal points of the segment 
(Figure 1). Note that 𝐍(𝑥) is everywhere tangential to Γ, and thus the force system outlined above 
corresponds to a curved rod in equilibrium under pure tension/compression. The equations of 
equilibrium of an infinitesimal piece of the rod yield the following conditions of funicularity [6]: 

 𝑝௫(𝑥) + 𝐶ᇱ(𝑥) = 0    (1) 

 𝑝௭(𝑥) + 𝑐ᇱᇱ(𝑥)𝐶(𝑥) + 𝐶ᇱ(𝑥)𝑐′(𝑥) = 0. (2) 

For prescribed load p, and endpoints (𝑥௜ , 𝑓(𝑥௜)), (1) can be solved independently, and the solution has 
one free parameter (e.g. the initial value 𝐶(𝑥଴)). Then, (2) becomes a linear boundary value problem 
with a unique solution in most cases. The one-parameter set of solutions leaves very limited freedom for 
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the designer to take functional and artistic aspects of the problem into consideration. In addition, some 
solutions of (1) include a point x with 𝐶(𝑥) = 0, while 𝑝௭(𝑥) ≠ 0. Then (2) is not solvable, and thus no 
corresponding funicular shape exists. 

2.2. Coupled funiculars 

One possible way to increase the freedom of the designer, and to resolve the contradiction between 
optimal structural form, and functional or artistic needs, is considering structures with more complex 
topology. We will consider structures composed of two curves: Γ௔: 𝐚(𝑥) = (𝑥, 𝑎(𝑥)), and Γௗ: 𝐝(𝑥) =
(𝑥, 𝑑(𝑥)). Motivated by application in bridge design, these will be referred to as arch and deck. Both 
curves are subject to arbitrary loads (𝐩௔ , 𝐩ௗ) and are required to be funicular. The two curves are 
connected by a dense sequence of load transferring elements referred to as hangers (both in case of 
compression and tension), which will be idealized as a continuous, weightless, distributed connection. 
The hangers are represented by a function 𝑘(𝑥) mapping point 𝐝(𝑥) of the deck into the 
corresponding point 𝐚(𝑘(𝑥))  of the arch (Figure 2), and by a vector-valued function 

 𝐊(𝑥) = 𝐾(𝑥)
ቀ𝐚൫௞(௫)൯ି𝐝(௫)ቁ

ห𝐚൫௞(௫)൯ି𝐝(௫)ห
,  (3) 

representing distributed force exerted by the cables on the deck. Here 𝐾(𝑥) is the magnitude of the cable 
force, and the rest of the formula is a unit vector in hanger direction. Positive sign of 𝐾(𝑥) represents 
tension in the hangers. In the followings, we will refer to such a system as a pair of coupled curves. A 
segment 𝑥 ∈ [𝑥଴, 𝑥ଵ] of a coupled curve is called funicular, if there exists a function 𝐾(𝑥), for which 

-  the segment 𝑥 ∈ [𝑥଴, 𝑥ଵ]  of the deck is funicular under 𝐩ௗ(𝑥) + 𝐊(𝑥), and  

- the segment 𝑥 ∈ [𝑘(𝑥଴), 𝑘(𝑥ଵ)] of the arch is also funicular under 𝐩௔(𝑥) − 𝐊(𝑥).  

As we will see, the hangers transfer forces from one curve to the other according to their needs, which 
broadens the range of geometries, which allow funicular equilibrium.  

 

Figure 2: Notation of coupled funiculars (A), and free-body diagrams of infinitesimal pieces of the curves (B). 
Note, that capital letters represent forces, small letters represent positions or distances.  

We emphasize that in practical applications, it is not often convenient to build curves with continuous 
coupling, however the proposed model is a reasonable approximation of a dense discrete sequence of 
cables. In an actual design process, the continuous solution can be replaced by a discretized system of 
coupling cables with arbitrary density. 



Proceedings of the IASS Symposium 2024 
Redefining the Art of Structural Design 

 

 

 

 
 

4

 

2.3. Equilibrium equations of coupled funicular curves and a new approach to form-finding 

The equilibrium of an infinitesimal segment of a pair of coupled funiculars can be derived in analogy 
with (1) -(2). It consists of two equilibrium equations of the deck (4) -(5), and two equations of the arch 
(6) -(7): 

  𝐾(𝑥)
௞(௫)ି௫

ห𝒂൫௞(௫)൯ି𝒅(௫)ห
+ 𝑝ௗ௫(𝑥) + 𝐷ᇱ(𝑥) = 0, (4) 

 𝑑ᇱᇱ(𝑥)𝐷(𝑥) + 𝑑ᇱ(𝑥)𝐷ᇱ(𝑥) + 𝑝ௗ௭(𝑥) + 𝐾(𝑥)
௔൫௞(௫)൯ି௥(௫)

ห𝒂൫௞(௫)൯ି𝒅(௫)ห
= 0. (5) 

 𝐴ᇱ(𝑥ௗ) − 𝐾(𝑥ௗ)
௞(௫)ି௫

ห𝒂൫௞(௫)൯ି𝒅(௫)ห
+ 𝑝௔௫൫𝑘(𝑥)൯𝑘′(𝑥) = 0 (6) 

 𝑎ᇱᇱ൫𝑘(𝑥)൯𝑘ᇱ(𝑥) 𝐴(𝑥) + 𝑎ᇱ൫𝑘(𝑥)൯ 𝐴′(𝑥) − 𝐾(𝑥)
௔൫௞(௫)൯ି௥(௫)

ห𝒂൫௞(௫)൯ି𝒅(௫)ห
+ 𝑝௔௭൫𝑘(𝑥)൯𝑘′(𝑥) = 0. (7) 

Here 𝐴(𝑥), and 𝐷(𝑥) are the horizontal components of the (unknown) internal normal forces of the two 
curves (arch, deck) in analogy with 𝐶(𝑥) in (1) -(2). Equations (4) -(7) form a coupled system of four 
equations. By choosing (four) unknown functions and by prescribing all other functions, different types 
of design problems can be addressed by these equations. The mathematical character of the problem also 
depends on this choice. A common approach in structural form finding is to prescribe loads, the 
geometry of one curve and the directions of hangers, and to seek the shape of the second curve along 
with the auxiliary functions 𝐴(𝑥), 𝐷(𝑥), 𝐾(𝑥).  The practical value of this approach lies in that the 
designer can prescribe the shape of one curve (e.g. main beam of a post-tensioned roof, or deck of a 
bridge) based on visual or functional requirements, and the shape of the other main component (post-
tensioning or bridge arch) is dictated by the laws of physics. 

Meanwhile, by using equations (4-7) it is possible to formulate a novel kind of form finding method, 
which we call free-form coupling. In this case, the shapes of both curves are prescribed, thus unknown 
functions are the internal forces in all three members 𝐾(𝑥), 𝐴(𝑥), 𝐷(𝑥) and the function 𝑘(𝑥) 
representing directions of hangers. The main advantage of the free-form coupling approach is that it 
offers the designer freedom to shape the two visually dominant elements of coupled curves freely, while 
maintaining the advantageous properties of funiculars. For a brief comparison of the two form finding 
methods see Table 1. 

Table 1: Comparison of two form finding methods. 

Method Prescribed functions Unknown functions 

Traditional form finding 𝑑(𝑥), 𝑘(𝑥), 𝐩௔(𝑥), 𝐩ௗ(𝑥) 𝑎(𝑥), 𝐷(𝑥), 𝐴(𝑥), 𝐾(𝑥) 

Free-form coupling 𝑑(𝑥), 𝑎(𝑥), 𝐩௔(𝑥), 𝐩ௗ(𝑥) 𝑘(𝑥), 𝐷(𝑥), 𝐴(𝑥), 𝐾(𝑥) 

3. Numerical solution of the free-form coupling problem 
First, 𝐾(𝑥) is expressed in explicit form using (4) -(5) as: 

 𝐾(𝑥) =
ିௗᇲᇲ(௫)஽(௫)ାௗᇲ(௫)௣೏ೣ(௫)ି௣೏೥(௫)

௔൫௞(௫)൯ିௗ(௫)ିௗᇲ(௫)(௞(௫)ି௫) 
ห𝐚൫𝑘(𝑥)൯ − 𝐝(𝑥)ห. (8) 

Equation (8) enables us to eliminate 𝐾(𝑥) from (5) -(7), to obtain a system of three nonlinear, first order 
differential equation for 𝑘(𝑥), 𝐴(𝑥), 𝐷(𝑥). With appropriate initial conditions at an arbitrary point 𝑥 =
𝑥଴, we obtain a standard initial value problem (IVP): 
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⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧𝑘ᇱ(𝑥) = 𝐾(𝑥)

௔൫௞(௫)൯ିௗ(௫)ି௔ᇲ൫௞(௫)൯(௞(௫)ି௫) 

௔ᇲᇲ൫௞(௫)൯஺(௫)ା௣ೌ೥൫௞(௫)൯ି௔ᇲ൫௞(௫)൯௣ೌೣ൫௞(௫)൯

ଵ

ห𝐚൫௞(௫)൯ି𝐝(௫)ห

𝐷ᇱ(𝑥) =  −𝐾(𝑥)
௞(௫)ି௫

ห𝒂൫௞(௫)൯ି𝒅(௫)ห
− 𝑝ௗ௫(𝑥)

𝐴ᇱ(𝑥) = 𝐾(𝑥)
௞(௫)ି௫

ห𝒂൫௞(௫)൯ି𝒅(௫)ห
− 𝑝௔௫൫𝑘(𝑥)൯𝑘ᇱ(𝑥)

𝑘(𝑥଴) = 𝑘଴

𝐴(𝑥଴) = 𝐴଴

𝐷(𝑥଴) = 𝐷଴

 (9) 

Numerical solutions of this problem were computed with the aid of the ode45 IVP solver in MATLAB 
environment. Figure 3 shows three examples, in each of which we chose the following shape functions 
and loads: 𝑎(𝑥) = −0.2 |𝑥 − 5|ଵ.଻ + 5 with no load on the arch 𝒑௔ ≡ 0, and 𝑑(𝑥) = (18ଶ −

(x − 5)ଶ)଴.ହ − 16  with constant load 𝑝ௗ௭ = −3 and 𝑝ௗ௫ = 0. The left endpoint was specified as 𝑥଴ =
0 and the solver was stopped if either 𝑥 or 𝑘(𝑥) reached the terminal value of 𝑥ଵ = 10. The three 
solutions were obtained by choosing different initial conditions (see figure caption). Comparison of the 
three solutions reveals that the initial values 𝐷଴, 𝐴଴ have large influence on the emerging k(x) function, 
i.e. on how the two curves are coupled.  

 
Figure 3: Three solutions of the free-form coupling problem with the same prescribed curves and loads (see main 
text), but with different initial conditions: [𝐷଴, 𝐴଴, 𝑘଴] = [2.54, −12.00, 0] (A), [𝐷଴, 𝐴଴, 𝑘଴] = [2.54, −13.50, 0] 

(B),  [𝐷଴, 𝐴଴, 𝑘଴] = [2.54, −15.00, 0] (C). The two curves are depicted as thick black curves, the coupling 
function k(x) is illustrated by a dense sequence of thin (blue online) line segments, the external loads by grey, 

and the reaction forces at the endpoints (balancing terminal values of internal forces) by arrows.  

It is also worth mentioning at this point that the numerical algorithms of IVPs allow loads 𝐩𝑎
(𝑥), 

𝐩𝑑
(𝑥) to be prescribed function of the (initially unknown) values 𝐷(𝑥), 𝐴(𝑥), 𝑘(𝑥). This feature is 

highly useful if the load includes the weight of the arch or the deck, which often varies in accordance 
with the internal forces in the case of optimal design solutions. We will refer to this extension of the 
form finding method as free-form coupling under dependent loads. 
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4. Finding solutions with prescribed endpoints 
The solution of Figure 2C has the special property that 𝑘(10) = 10, and thus the solution is symmetric.  
From a designer’s point of view, it is often convenient to prescribe all endpoints of the coupled curves 
to match geometric constraints. Both left endpoints as well as the right endpoint of the deck can be 
specified easily within the framework of IVPs by appropriate choice of 𝑥଴, 𝑥ଵ, and 𝑘଴. However, a 
prescribed value of the remaining endpoint means that one of the initial conditions for 𝐴(𝑥଴), 𝐷(𝑥଴) 
needs to be replaced by a constraint of the form 𝑘(𝑥ଵ) = 𝑘ଵ, which turns the problem into a nonlinear 
boundary value problem (BVP) instead of an IVP. There are well-established numerical methods to 
tackle nonlinear BVPs, such as the shooting method or iterative solution techniques based on finite 
element method or finite difference method [7], however all of them are computationally much more 
expensive than the numerical solution of an IVP.  

The use of a BVP solver is unavoidable in the case of dependent loads. However, a simple workaround 
is possible if loads are not dependent, i.e. their numeric values are known in advance. In this special 
case, an adapted version of the IVP is available. Consider the global equilibrium of the whole structure 
with prescribed endpoints at both ends, under (known) loads, and four (unknown) reaction forces at the 
endpoints of the curves (Figure 4). The equilibrium of this force system is characterized by 3 
independent equations in 4 unknowns, which has in the generic case a one-parameter set of solutions. 
Thus, it is possible to find many initial values 𝐴଴, 𝐷଴, which are consistent with global equilibrium. With 
initial conditions obtained this way, one can solve the original IVP, to obtain a solution, which usually 
respects the additional boundary condition. In some exceptional cases, this procedure can still yield false 
solutions of the BVP, but this phenomenon will not be discussed here in detail.  

 

Figure 4: Graphical method of obtaining initial values 𝐴଴, 𝐷଴, which provide a solution with prescribed 
endpoints. Thick black curves represent the arch and the deck with prescribed endpoints. 𝐑 is the resultant of all 

loads, 𝐑௟ , 𝐑௥  are the resultant of support reactions at the left (−𝐍ௗ(𝑥଴) and −𝐍௔(𝑘଴)) and right (𝐍ௗ(𝑥ଵ) and 
𝐍௔(𝑘ଵ)) endpoints, respectively.  

Instead of writing and solving the equilibrium equations mentioned above, we now present a graphical 
approach to finding appropriate initial values 𝐴଴, 𝐷଴ (Figure 4). Here the problem of finding those initial 
values is reduced to finding the equilibrium of three forces: the resultant of the external loads (𝐑), the 
resultant of the two initial reaction forces (𝐑௟) , and the resultant of the two terminal reactions (𝐑௥).  

In the generic case, when the tangents at the endpoints of the arch and the deck are not parallel, the 
resultant forces 𝐑௟ , 𝐑௥ can be found as the vector sum of two reactions acting at the intersection points 
𝑙, 𝑟 of their lines of action. The three forces 𝐑, 𝐑௟, 𝐑௥ are in equilibrium, hence their vector sum equals 
zero, and their lines of action intersect in a single point 𝑚. Accordingly, we can pick an arbitrary point 
𝑚 on the line of action of 𝐑. Then, the conditions of equilibrium determine 𝐑௟ , 𝐑௥. Finally, the initial 
values 𝐴଴, 𝑅଴ are obtained by the decomposition of 𝐑௟ to the sum of two vectors tangential to the two 
curves. The non-generic case when any of the intersection points 𝑙, 𝑟 does not exist needs minor 
adaptation of the process outlined above (skipped for the sake of brevity). 

The arbitrary position of 𝑚 reflects, that there is one degree of freedom in picking appropriate initial 
values. Instead of picking m, it is also possible to prescribe the value of either 𝐴଴ or 𝐷଴ in advance. 
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5. Limitations of free-form coupling 
In some cases, the IVP (9) does not have a solution, the solution is mechanically irrelevant, or it 
corresponds to undesirable cable distributions. We assume that the load functions are continuous, and 
the shape functions have continuous 2nd derivatives. Then two/three types of problem may occur. 

1. 𝑘′(𝑥) is undefined due to division by 0 in (9), 
2. The value of 𝑘ᇱ(𝑥) dictated by (9) crosses 0,  
3. The values of 𝐴ᇱ(𝑥), and 𝐷′(𝑥) given by (9) are undefined due to ห𝒂൫𝑘(𝑥ௗ)൯ − 𝒅(𝑥ௗ)ห = 0. 

The first case leads to a singularity in 𝑘(𝑥), i.e. it diverges to infinity. The second case lead to solutions, 
that do not fit the definition of coupled curves, because negative 𝑘′(𝑥) changes the topology of the 
structure. The third scenario happens if two scalar equations are satisfied simultaneously, which is non-
generic. This event has not been observed in simulations, and it will not be investigated any further.  

For a deeper understanding of the first two scenarios, we rewrite the formula for 𝑘′(𝑥), with the aid of 
(8) and the first equation of (9) as: 

 𝑘ᇱ(𝑥) = ቀ
௔ିௗି௔ᇲ(௞ି௫)

௔ିௗିௗᇲ(௞ି௫)
ቁ ⋅ ቀ

ିௗᇲᇲ஽ାௗᇲ௣భೣି௣భ೥

௔ᇲᇲ஺ି௔ᇲ௣మೣା௣మ೥
ቁ. (10) 

The arguments of the functions have been dropped to shorten notation. The value of 𝑘ᇱ(𝑥)  changes sign 
if any of the two nominators in (10) is equal to zero: 

 𝑎 − 𝑑 − 𝑎ᇱ(𝑘 − 𝑥) = 0, or (11) 

 −𝑑ᇱᇱ𝐷 + 𝑑′𝑝ଵ௫ − 𝑝ଵ௭ = 0. (12) 

Equation (11) means that cables become tangential to the arch; thus, cable forces cannot exert a force, 
which makes the arch funicular (for an example, see Figure 5A)). Equation (12) means that the deck is 
locally funicular without cables (see (1), (2)), i.e. the cable forces per unit length of the deck drops to 
zero, whereas the arch usually requires nonzero cable force. Figure 4B shows an example of this 
scenario.  

Similarly, 𝑘ᇱ(𝑥), is undefined if any of the two denominators in (10) is equal to zero:  

 𝑎 − 𝑑 − 𝑑ᇱ(𝑘 − 𝑥) = 0, or  (13) 

 𝑎ᇱᇱ𝐴 − 𝑎ᇱ𝑝ଶ௫ + 𝑝ଶ௭ = 0. (14) 

Equation (13) means that cables are tangential to the deck (Figure 5C)), and (14) means that the arch is 
locally funicular without cables (Figure 4D). 
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Figure 5: Examples of problematic layouts of coupled curves, which lead to failure of the IVP solver. The arch is 
unloaded in all cases, and the load of the deck is depicted by dashed lines. The numerical solution was aborted 
when proximity of any of the failure criteria (eq11) -(eq14) was detected. Blue arrows depict reaction forces 

ensuring equilibrium at the initial points of the curves and at the terminal points where simulation was aborted. 
Shifted copies of some arrows are added to enhance visibility. A: Hangers become tangential to the arch, see 

(11). B: Deck needs no cable force for funicularity as expressed by (12). In this case, failure is caused by 
vanishing deck load C: Hangers are tangential to deck (13). D: deck needs no cable force for funicularity (14). In 

this case failure is cause by the inflexion point of the arch.    

Summary 
This work investigated ‘coupled funicular curves’, which is a structural topology often used in structural 
design. The main result is the proposal of a numerical method for finding an appropriate hanger 
distribution, that makes two main curves of prescribed shapes funicular. This method provides freedom 
in forming the two main components of coupled curves as dictated by design criteria such as artistic 
form, and functional or technological demands. An extension of the new free-form coupling method can 
be used to find cable distributions for prescribed segments of both curves. We showed, that the set of all 
solutions of the free-form coupling method is a set of internal force functions (in each structural member) 
and cable position descriptor function with one free parameter. The feasibility of the method was 
illustrated by an example. 

We also proposed a list of failure mechanism of the free-form coupling method. Problems occur, when 
hangers become tangential to any of the coupled curves, or coupled curves require hanger forces of 
opposite sense. 

These failure types deserve further investigation, since the differential equations may still have solutions 
albeit with 𝑘ᇱ(𝑥) < 0. Those solutions provide equilibrium in an unconventional way, which may be 
relevant to structural design. Another area, which deserves further research is free-form coupling of 
three-dimensional curves, as a potential form-finding tool of spatial arch bridges. Lastly, we recall that 
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the continuous results of the proposed method need to be discretized as part of the post-processing of 
the solution. Acquiring a continuous solution is highly useful in the sense, that it encapsulates infinitely 
many discrete solutions. Methods of choosing feasible, and mechanically relevant discretizations (i.e. 
discrete cable setups) might also be the subject of further research. 
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