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Abstract 

In the context of the current climate emergency, making efficient use of structural materials is vital. 
Alongside this, structural designs must achieve both the strength and stiffness that are required for the 
structure to operate with safety and comfort. Topology optimization, e.g. using the ground structure 
method, can provide a powerful approach to obtaining structural forms which achieve these requirements 
with minimum material usage. When the structure is designed based on just a single dominant loading 
case, then an optimal design exists which is simultaneously the strongest and stiffest form possible. 
However, when the structure must resist a wider range of loading cases, then the stiffest design and the 
strongest design are no longer the same. Designs of optimal strength have been well studied both 
numerically and analytically. However, until recently, study of the topologies of optimal stiffness 
structures has been limited to relatively coarse resolution numerical results. Recent developments by the 
author have unlocked high-resolution results for planar 2D trusses of optimal stiffness. In this 
contribution, that approach – the ground structure method, with adaptive member adding – is extended 
to axially loaded 3D problems of optimal stiffness. It is shown that the forms of optimal stiffness 
structures are significantly and qualitatively different to optimal strength designs. 

Keywords: Optimization, Ground Structure Method, Truss Topology Optimization, Compliance-based optimization, Strength-
based optimization 

1. Introduction 
Structural materials, such as concrete or steel, are highly carbon intensive in their production, 
transportation, and construction. Thus, is it imperative to make the most efficient use of these materials 
in structural design. Optimization approaches can be a valuable tool to facilitate this. However, with any 
optimization-based approach, it is of vital importance to ensure that the mathematical problem posed 
suitably represents the real-world scenario. One key division within the structural optimization 
community is between design for optimal strength, and design for optimal stiffness. This distinction is 
unnecessary for simple academic problems containing just a single load-case; however, the two 
approaches obtain significantly different designs for structures subjected to a variety of possible 
loadings, as all real-world structures are. Furthermore, real-world structures typically must fulfil 
demands relating to both strength and stiffness. Despite this, these two areas of the research community 
are rather disparate, and there is little work on comparatively evaluating the solutions of optimal strength 
and optimal stiffness, or on transferring techniques from one field to the other.  

This contribution takes the adaptive ground structure (member adding) approach [1], which is common 
in the strength-based optimization community, and applies it to spatial problems of optimal stiffness 
design. The first results for stiffness-based problems using this approach can be found in [2] (for 
planar problems only) along with a more comprehensive review of the background literature.  
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2. The ground structure method for truss topology (layout) optimization 
The ground structure method is an approach for truss topology, or layout, optimization. As shown in 
Figure 1a, the problem is first defined, including loads, supports and the allowable design domain (note 
that an initial guess for the structure is not required). The domain is then discretised using a large number 
of nodes (Figure 1b), each pair of which are then connected by a potential member to form the ground 
structure (Figure 1c). Finally, a convex optimization problem is formulated and solved to give the areas 
of the elements in the optimal structure (Figure 1d). The problem to be solved differs for strength- or 
stiffness-based design.  

    

 (a)   (b)  (c) (d) 
Figure 1: The ground structure method, process stages. (a) Problem definition. (b) discretization of design domain 
using nodes. (c) connection of all pairs of nodes with potential elements. (d) optimal set of elements selected via 
convex optimization.  

2.1 Strength-based design (rigid-plastic model) 

The ground structure method is often used to find the strongest possible design, by applying principles 
of limit analysis, i.e. with a rigid-plastic material model. This formulation was first suggested by [3] 
with later developments by [1, 4]. For this strength-based design paradigm, the optimization problem 
which must be solved to move from Figure 1c to 1d can be stated for a problem containing 𝑚 potential 
elements and 𝑛 nodes as: 

     min
𝒂,𝒒ೖ

𝑉 = 𝒍்𝒂                   minimise volume        (1a) 

 subject to (𝑩𝒒௞ = 𝒇௞)∀௞                    equilibrium        (2b) 

 (σ௒ 𝒂 − 𝒒௞ ≥ 𝟎)∀௞  yield stress (tension)        (3c) 

 (σଢ଼ 𝒂 + 𝒒௞ ≥ 𝟎)∀௞ yield stress (compression)        (4d) 

Where 𝒍 = [𝑙ଵ, 𝑙ଶ, … , 𝑙௠]் is a vector containing the lengths of each potential element,  
𝒂 = [𝑎ଵ, 𝑎ଶ, … , 𝑎௠]் is a vector of optimization variables representing the cross-section area of each 
potential element, which can be used to calculate the total structure volume 𝑉. The axial force in each 
element in a certain load-case 𝑘 is represented by the optimization variables 𝒒௞ = [𝑞ଵ, 𝑞ଶ, … 𝑞௠]். The 
matrix 𝑩 has dimensions 2𝑛 × 𝑚 for 2D problems or 3𝑛 × 𝑚 for 3D problems and contains direction 
cosines which may be multiplied by 𝒒௞ to resolve the axial forces along the global coordinate axes. Then 
𝒇௞ is a vector of length 2𝑛 for 2D problems or 3𝑛 for 3D problems, which contains the externally applied 
loads in case 𝑘. A specified plastic yield stress 𝜎௒ must be defined, here this will be assumed to be equal 
in tension or compression. 

2.2 Stiffness-based design (linear-elastic model) 

For the problem of stiffness-based (linear-elastic) design, the total structural volume will again be 
minimised, but now with a constraint on the stiffness. A range of formulations for this and equivalent 
problems (e.g. maximising stiffness for fixed material usage) can be found in [5]. 

Here, to quantify stiffness, a limit 𝑊௞ will be set on the work done by the applied loads (i.e. the applied 
force multiplied by displacement, summed over every degree of freedom at each node). This limit is 
applied in each load-case individually. To transform this limit to a setting comparable to the static, force-
based problem in (1) requires some algebraic manipulation, which is outlined in the following paragraph. 

First, it must be noted that the external work in a load-case will always be equal to the internal work, 
allowing the constraint to be re-stated as “total internal work in load-case k ≤ 𝑊௞”. Internal work can 
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be calculated for each element, and then summed to give the total for the load-case. For this purpose, 
additional optimization variables, 𝑝௜,௞, represent the internal work of element 𝑖 in load-case 𝑘. Then, for 

a single element, 𝑝 is defined to be 
ଵ

ଶ
𝐾𝑥ଶ, where 𝐾 is the stiffness of the element and 𝑥 is the extension 

of the element. By rearranging this, and using standard linear-elastic relationships (e.g. elastic modulus 

𝐸 =
ఙ

ఢ
=

stress

strain
) it is possible to obtain: 𝑝 =  

ଵ

ଶ
𝐾𝑥ଶ =

ଵ

ଶ

௤

௫
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ଵ

ଶ
𝑞𝑙𝜖 =

ଵ

ଶ
𝑞𝑙

ఙ

ா
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ଵ

ଶ
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௤
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ଶ

௟

ா

௤మ

௔
 .  

This is then combined with the objective function and equilibrium constraints as before:  

     min
𝒂,𝒒ೖ,𝒑ೖ

𝑉 = 𝒍்𝒂                   minimise volume        (2a) 

 subject to (𝑩𝒒௞ = 𝒇௞)∀௞                  equilibrium        (2b) 

 ൬
ଵ

ଶ

௟೔

ா೔

௤೔,ೖ
మ

௔೔
≤ 𝑝௜,௞൰

∀௞
 internal work, per-element        (2c) 

 ൫∑ 𝑝௜,௞௜∈ெ ≤ 𝑊௞൯
∀௞

   limit internal work, total        (2d) 

 𝒂 ≥ 𝟎           (2e) 

Whilst this formulation is no longer linear, it can be posed as a convex conic problem, which can be 
solved at a similar speed to a linear problem when using modern solvers. For a single load-case, there is 
a statically determinate solution, which is the optimal design for both (2) and (1); i.e. with equal values 
of 𝒒௞. The appropriate cross-section areas must be calculated according to the relevant material and 
problem parameters for each problem, i.e. 𝜎௒ for plastic problems solving (1) or 𝑊௞ , 𝐸 for the elastic 
problem solving (2).  

2.3 Computational considerations 

Both (1) and (2) are convex optimization problems, and thus can be easily solved to global optimality, 
even with large numbers of variables. However, for very dense nodal grids, the computation time may 
still become significant, whilst the memory requirements may outstrip the capabilities of typical laptop 
or desktop computers. In such cases, the adaptive ground structure method can be used. 

A full derivation of this approach is omitted for brevity, and interested readers are referred to [1] or [2] 
for descriptions within the settings of strength-based or stiffness-based design respectively. Key points 
are that the adaptive approach allows the problem to be solved using a reduced ground structure (e.g. 
adjacent connectivity), which is iteratively increased. It can be mathematically proven that the result 
obtained through the adaptive approach will be identical to that obtained by solving the full problem 
(again, for a full proof of this, readers are referred to the aforementioned works), however the 
computational requirements, in terms of both time and memory, can be reduced by orders of magnitude. 

3. Structures of optimal strength or optimal stiffness: Numerical results. 
Mathematically, extension of the ground structure methods to 3D problems poses few challenges, as 
noted in Section 2. The principal difficulty is in managing the geometric input and output in 3D space. 
For this reason, the Python code from [2] has been adapted to function within the Grasshopper 
parametric modelling environment of Rhino 8. Numerical volumes will depend on additional parameters 
e.g. deflection limits, so are not comparable between elastic and plastic results. 

3.1. 3D Canopy Example  

The approach will be tested on a 3D problem, as specified in Figure 2. The design domain is a cuboid 
with equal width and depth 𝐿 and a height 𝐿 2ൗ . Pin supports are provided in the bottom 4 corners of 
the domain, and loads are also applied at the base elevation as shown. The loaded points are halfway 
between the midpoint of a side, and the centre of the domain, and pairs of opposite loadings are 
applied simultaneously, leading to a problem with 2 load-cases. By symmetry, it is possible to 
explicitly model just a quarter of the domain, which has been discretized using nodes at a spacing of 
௅

ଵ଺
, leading to a ground structure containing 220,280 potential elements.         
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(a) 

 
(b) 

Figure 2: 3D Example: Problem specification. (a) Load-case 1 and (b) Load-case 2. Elevation and plan shown for 
each case. Note that ⊗ is used in plan to indicate loading location (downwards, at base of domain). 

 

      
(a) 

      

(b) 

Figure 3: 3D Example: Optimal structures to carry each load-case independently. Plan and perspective views. 
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For comparison purposes, structures optimized for just one of the two load-cases are shown in Figure 3. 
As these structures are single load-case solutions, they are statically determinate and thus valid for any 
material model, i.e. for both strength-based and stiffness-based design. One naïve approach to multiple 
load-case design suggests a strategy of combining these two structures to create a design capable of 
resisting either loading. For strength-based design, this gives a feasible solution, but one that uses much 
more material than is necessary – over 46% more for this example. For stiffness-based design, this 
approach is typically not possible, as the required displacements would not be compatible. (E.g. here, 
the elements across the centre of the domain would need to displace separately according to which case 
was loaded.) Even assuming that detailing could somehow be provided to facilitate this, the naïve 
approach still requires 41% more material than necessary in this case.    

Instead, correct solutions should be obtained by solving the multiple load-case formulations (1) or (2). 
The solutions to these are shown in Figure 4. The optimal strength and stiffness designs are now 
significantly different. For example, the optimal strength design contains a dense web of elements in the 
centre of the domain, whilst this region of the optimal stiffness design is relatively empty, with just a 
single cross of elements on the base of the domain. Another difference is that the ‘legs’ which connect 
to the support points go directly towards a point almost above the load in the strength-based design, 
while in the elastic design they are at 45o to the domain edges, with a distinct split to go perpendicularly 
and form a square above the loads. 

        

(a) 

 

        

(b) 

Figure 4: 3D Example: Optimal solutions to the two load-case problem for (a) plastic, strength-based design and 
(b) elastic, stiffness-based design. Plan and perspective view shown for each design. 



Proceedings of the IASS Symposium 2024 
Redefining the Art of Structural Design 

 

 

 6

 

      

(a) 

 

       

(b) 

Figure 5: 3D Example: Decomposition of optimal plastic design into component load-cases. (a) Half of load-case 
1 + load-case 2. (b) Half of load-case 1 - load-case 2. Note that the loading in part b can achieve equilibrium 

without requiring additional reaction forces, therefore this structure does not connect to the supports. 

Both solutions contain features which are commonly observed in optimal truss structures for single load-
cases. Particularly evident in this case are the fans of tensile elements from the loads and accompanying 
arches of compression elements.  

The observation of these characteristics in the stiffness-based results cannot be easily explained by any 
known principle. Nonetheless, this suggests that stiffness-based solutions are in some way linked to 
single load-case designs and that further research in this avenue may be fruitful.  

For the strength-based design, it is not surprising that such features are observed; this is because the 
Prager-Nagtegaal superposition principle [6] can be used to decompose the multiple load-case result in 
Figure 4a into component structures, obtained through single load-case optimization results. These 
single load-case results are not, however, those shown in Figure 3. Instead, these component load-cases 
are defined by taking the half of the sum or difference of the two applied load-cases. The single load-
case results for these component load-cases are shown in Figure 5. By comparing this with Figure 4a, 
the more complex multiple load-case result can be more easily interpreted. It can also be clearly seen 
that the optimal stiffness design (Figure 4b) is not closely related to these component structures.  

3.2 2D Cantilever Example 

To better illustrate the superposition principle for strength-based design, and further illustrate the 
differences with optimal stiffness designs, a simpler problem will be employed. The problem consists 
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of a cantilever, with permitted height equal to half the length. Point loads are applied at the tip of the 
cantilever, and may be applied at either the top or bottom of the domain as shown in Figure 6a/b. The 
optimal strength structure, obtained by solving (1), is shown in Figure 6c. Again, this structure displays 
forms characteristic of optimal structures, particularly the two near-orthogonal families of intersecting 
tension and compression elements.  The component structures for this case consist of a ‘difference’ case, 
where the optimal structure is simply a vertical line on the left of the domain, connecting the two points 
of load application. Combined with this is the ‘sum’ case, for which the optimal design comprises the 
remaining elements in Figure 6c.  

Figure 6e annotates the optimal strength result with load-paths to give a conceptual explanation of the 
superposition principle (considering the case when the loading is applied to the top of the domain). It 
may be imagined that the applied load is split into two equal portions; the first of which is carried directly 
through the ‘sum’ structure to the supports; this is indicated with blue arrows in Figure 2e. Meanwhile, 
the other portion is transferred along the vertical element of the ‘difference’ component structure to the 
location of the other loaded point. From there, it again enters the ‘sum’ component of the structure and 
is transmitted to the support. This highlights why this superposition principle cannot be directly applied 
to stiffness-based design. The load-path indicated in black is longer, and therefore less stiff, than the 
load-path indicated in blue, and so they cannot be equally utilized in a linear-elastic framework.  

Meanwhile, the optimal stiffness result, solving (2), is shown in Figure 6d. Again, there are forms 
characteristic of single load-case optimal designs, including the near-orthogonal tension and 
compression elements. However, it can again be seen that this optimal stiffness solution is not generated 
by the component solutions previously mentioned. Nonetheless, there are single load-case designs which 
do present similarities to the structure in Figure 6d. Specifically, single load-case structures for point-
loads at other locations along the right edge of the domain can be distinguished, such as the examples 
shown in Figure 6f. However, further work is required to establish how this observation may be 
generalised to other cases, as there is not a clear analogy to this in the example shown in Section 3.1.  

4. Concluding Remarks 
This contribution has demonstrated that the adaptive ground structure method may be successfully 
applied to the problem of optimal stiffness design in both 2D and 3D cases. Consideration of the full 
multiple load-case problem was shown to be equally important for optimal stiffness design as it is for 
optimal strength design, allowing over a 40% material saving over a naïve design approach based on 
identifying the optimal design for each case separately.  

The optimal stiffness designs were observed to contain many forms typical of statically determinate, 
single load-case optimal results, including fan regions and regions of near-orthogonal tension and 
compression elements. Furthermore, there was some indication of superposition-like characteristics. 
However, the optimal stiffness solutions were notably different to the optimal strength designs, which 
could be interpreted by use of the Prager-Nagtegaal superposition principle. This indicates that further 
investigations are required in this area to fully establish a means of interpreting optimal stiffness designs, 
and that the adaptive ground structure approach can be a valuable numerical tool for informing such 
investigations. The method is fully generalizable to any configuration of loads and supports. 

Finally, the adaptive ground structure approach for optimal stiffness design has been shown to be 
conveniently implemented within a commercial parametric modelling package (Rhino/Grasshopper), 
and further work is planned to make this methodology more widely available on such platforms. 
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Figure 6: 2D Example: (a) and (b) Problem specification under load-cases 1 and 2 respectively.  
(c) Solution for optimal strength (d) Solution for optimal stiffness. (e) Annotated solution for optimal strength, 

illustrating the superposition principle. (f) Some single load-case solutions with different loading positions. 
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