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Abstract 

The article discusses the application of structural morphology to snow vaults, with the traditional forms 

being the parabola, the catenary and the circle. Additionally, the less commonly known constant stress 

arch is introduced. The parabolic stand-alone momentless arch requires a constant vertical load 

throughout the entire span, with decreasing thickness from crown to base. In contrast, the catenary arch 

maintains a constant thickness over the entire arch. The shape function is of the hyperbolic cosine type. 

The article suggests that the circular shape is only a reasonable structural shape for low rise ratios. In a 

constant stress arch, the thickness increases from crown to base, and the shape follows a logarithmic 

cosine function. The article compares snow vaults and finds that the constant stress shape is superior to 

the catenary and parabola shapes. The constant stress vault allows for considerably larger span lengths 

compared to parabolic or catenary vaults. This vault type has not yet been used in the design of snow 

structures. The constant stress vault, characterized by its low compressive stress, allows for the use of 

weaker and more affordable materials such as poured adobe and adobe bricks in construction. To ensure 

safety, it is necessary to control and recalculate the load bearing capacity of snow vault constructions 

due to the potential for large deformations during their service life. 

Keywords: snow constructions, arch, vault, constant stress vault, weak material 

1. Introduction 

The thrust line theory is a well-known design principle for stone and concrete arches. It assumes that 

compressive strength is not critical to the load-bearing capacity in stone structures (Gerhardt and Pichler 

[1]). To ensure a cross-section without tensile stress in the arch, the thrust line must be located in the 

middle third of the arch rib cross-section.  However, this assumption is not applicable to snow vaults. 

The traditional form of snow structure used in Greenland and Alaska is the igloo (Handy [2]). A practical 

design guideline for snow structure design has been published in Finland (RIL [3]). The guideline 

requires static calculations for snow structures, with simplified instructions provided for structures that 

have not undergone separate structural calculations. The Lapland University of Applied Sciences has 

released a practical guide for designing snow and ice structures based on field tests. The guide is intended 

for designers and authorities responsible for implementing snow structures (Ryynänen [4]). These 

publications do not have a code status, but they are often applied in practice. 

When designing and constructing snow and ice vaults, it is crucial to ensure that the thrust line closely 

follows the axis of gravity. The moment-free form can only be achieved for permanent loads, as all other 

mailto:eojarvenpaa@gmail.com


Proceedings of the IASS Symposium 2024 

Redefining the Art of Structural Design 
 

 

 2 

 

variable loads impose bending stresses. In snow structures, the weight of the snow is the primary load, 

so the focus should be on designing the shape.  

Research has shown that the most efficient shape for material flow when supporting an evenly 

distributed vertical load between two support points is the parabolic shape (Tyas [5]). 

In 1675, Robert Hooke first published the principle of the catenary arch (Hooke [6]). Although he 

recognized that the arch was not a parabola, he was unable to determine its mathematical solution 

(Bukowski [7]). The equation for the shape of the arch was published in 1691, after the development of 

differential and integral calculus (Heyman [8], Alassi [9]).  

The arch can be designed to maintain a constant compressive stress throughout the structure (Marano et 

al. [10] and [11]). This arch shape has only been studied in recent years (Lewis [12]).  The constant 

stress arch leads to a low compressive stress, which is a significant advantage for snow structures, 

allowing much longer spans than parabola or catenary shapes. 

The circular shape is effective in handling compressive loads but is less suitable for vertical loads. To 

construct a stand-alone, momentless circular vault, it is necessary to increase the thickness of the vault 

towards the base as its height increases. The circular arch shape is only viable for relatively shallow 

arches. 

The shape of the momentless arch does not precisely follow the shape along the centroidal axis. The 

transfer of the center of gravity above the centroidal axis is affected by the thickness and curvature of 

the arch rib (Nikolic [13]). This article will not discuss this topic further. 

When building a snow vault, it is important to note that the shape of the inner soffit differs from the 

shape along the axis of gravity. The construction drawings should provide the shape of both the inner 

and outer soffits. 

In cold regions, such as popular tourist destinations, snow and ice are often used as temporary building 

materials. One of the largest tourist events in the world is the annual snow sculpture festival in Harbin, 

China. Similarly, in North Finland, snow structures are built every year. Figure 1 displays the interior of 

a snow castle in Kemi, Finland. 

 

Figure 1: Snow castle in Kemi, Finland, year 2019 

2. Vault forms 

2.1. Parabolic snow vault 

The equation for the parabolic arch shape in the coordinate system shown in Figure 2 is 

𝑦 = −
4ℎ

𝑙2
𝑥2 + ℎ , −𝑙/2 < 𝑥 < 𝑙/2. (1) 
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Figure 2: Parabolic stand-alone momentless snow vault 

The horizontal force H acting on the vault, corresponding to the vertical load w is then given by 

 𝐻 =
𝑤𝑙2

8ℎ
, (2) 

and the thrust force of the vault at point x is 

𝑅(𝑥) = 𝐻√1 + (
𝑑𝑦

𝑑𝑥
)

2

. (3) 

Consequently, the normal force R at the base is 

𝑅 =
𝑤𝑙2

8ℎ
√1 +

16ℎ2

𝑙2
. (4) 

If we denote the area of the cross-section at the vertex by the symbol Al, the area of the cross-section 

A(x) at the point x is 

𝐴(𝑥) =
𝐴𝑙

√1 + (
𝑑𝑦
𝑑𝑥

)
2

. (5)
 

The dead load of the stand-alone vault is 𝑤 = 𝑞𝐴𝑙, where q is the unit weight of the snow. Combining 

Equations (4) and (5) the compressive σ at the base is 

𝜎 = 𝑞 (
𝑙2

8ℎ
+ 2ℎ) . (6) 

The compressive stress reaches its minimum when 

𝑙

ℎ
= 4. (7) 

The maximum span length 𝑙𝑝𝑚𝑎𝑥 of the momentless stand-alone parabolic arch is given by the rise ratio 

4.  Using Equations (6) and (7) the span length can be calculated as 

𝑙𝑝𝑚𝑎𝑥 =
𝜎

𝑞
. (8) 

2.2.1 Stress in stand-alone momentless parabolic arch 

The compressive stress at the base of a momentless parabolic arch is determined by the rise ratio, unit 

weight, and span length. This stress can be calculated using the formula 

𝜎 = 𝑘𝑝𝑞𝑙, (9) 

where the coefficient kp is determined in relation to the rise ration by using Equation (6). The calculated 

results of the coefficient kp are shown graphically later in Figure 5.  
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2.2. Catenary snow vault 

The equation for the catenary shape arch in the coordinates shown in Figure 3 can be written as follows:  

𝑦 = −𝑎 cosh (
𝑥

𝑎
) + 𝑎 + ℎ, (10) 

where a = H/w, H is the horizontal force and w is the weight per unit length. 

 

Figure 3: Catenary stand-alone snow vault 

 

Corresponding to the parabola above, the thrust force R(x) at point x is 

𝑅(𝑥) = 𝐻√1 + (
𝑑𝑦

𝑑𝑥
)

2

. (11) 

By applying Equation (10) to Equation (12) the expression of the thrust R(x) is 

𝑅(𝑥) = 𝐻√1 + (sinh (
𝑥

𝑎
))

2

= 𝐻 cosh (
𝑥

𝑎
) . (12) 

The horizontal force H is directly proportional to the arch length with the same rise ratio. The expression 

for the thrust force R at the base can therefore be written as: 

𝑅 = 𝑎𝑤 ∗ cosh (
𝑙

2𝑎
) . (13) 

To determine the minimum value of the normal force R(x) at the base, we consider the unit vault with 

span length l = 1 and cross-section weight per unit length w = 1 and differentiate Equation (12). In this 

case, the horizontal force H0 = a0 at x = ½, and  

𝑑(𝑅(𝑎0))

𝑑𝑎0
=  cosh (

1

2𝑎0
) −

sinh (
1

2𝑎0
)

2𝑎0
= 0, (14) 

which is minimized when  𝑎0 = 0.416778. 

Since y = 0 at x = ½ in Equation (10), the height of the unit length vault can be calculated as h0 = 

0.337662. Therefore, the rise ratio that achieves the minimum normal force R at the base is 

𝑙

ℎ0
=

1

0.337662
= 2.961. (15) 

This rise ratio also determines the maximum span length 𝑙𝑐𝑚𝑎𝑥 of the catenary vault when the 

compression stress σ at the base is the criteria. The formula for this is 

𝑙𝑐𝑚𝑎𝑥 =
𝜎

0.416778 ∗ 𝑞 cosh (
1

2 ∗ 0.416778)
= 1,325 ∗

𝜎

𝑞
, (16)

 

where q is the unit weight of the snow. 
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2.2.1 Stress in catenary stand-alone arch 

 

The compressive stress of the catenary stand-alone arch at the base depends on the rise ratio, unit weight, 

and span length. This stress 𝜎  can be calculated using the following formula: 

𝜎 = 𝑘𝑐𝑞𝑙. (17) 

Equation (10) is used to solve for the corresponding parameter a and rise relation using a unit vault, 

while Equation (12) is used for axial force calculation. The coefficient kc is calculated and presented 

graphically later in Figure 5. 

2.3. Circular snow vault 

The axis of gravity of the circular shape arch in the coordinates shown in Figure 4, can be expressed as 

a function of its span length and height as follows: 

 𝑦 = (
1

8ℎ
) (4ℎ2 − 𝑙2 + √−64𝑥2ℎ2 + 16ℎ4 + 8ℎ2𝑙2 + 𝑙4) . (18) 

Figure 4 illustrates how the thickness of the moment-less circular stand-alone arch increases towards the 

base. The stress in the arch decreases from the top to the base (Williams [14]). There is a limit to the 

rise-to-span ratio of a circular vault where the soffits (the inner surfaces) intersect themselves. Typically, 

this limit is about 2.3 depending on the snow density. 

 

Figure 4:  Example of a stand-alone momentless circular snow vault. 

 

2.4. Constant stress snow vault 

Based on the coordinates in Figure 5, Equation for the constant stress shape arch is 

𝑦 =
1

𝑏
ln(cos(𝑏𝑥)) + ℎ, (19) 

where b = q⁄|σ|. The symbol q is the unit weight of the material and σ is the stress. 

 

Figure 5: Constant stress vault   

The thrust R(x) can be calculated now as 
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𝑅(𝑥) = 𝐻√1 + (
𝑑𝑦

𝑑𝑥
)

2

= 𝐻√1 + (tan(𝑏𝑥))2. (20) 

By choosing the cross-section Al at the apex, the horizontal force H is 

𝐻 = 𝐴𝑙𝜎. (21) 

The cross-sectional area at point x can be calculated as follows (Williams [14]): 

𝐴(𝑥) = 𝐴𝑙𝑒− ln(cos(𝑏𝑥)). (22) 

The thrust R, at the base is then: 

𝑅 = 𝐴𝑙𝜎√1 + (tan(𝑏𝑥))2. (23) 

Using the formula 𝑅2 = 𝑉2 + 𝐻2 and Equations (21) and (23), the vertical support reaction Vy at the 

base can be expressed as: 

𝑉𝑦 = 𝐴𝑙𝜎 tan (
𝑏𝑙

2
) . (24) 

2.4.1 Stress in constant stress stand-alone arch 

The compressive stress of a constant stress arch is determined by the rise ratio, unit weight and span 

length. The stress σ can be expressed as: 

𝜎 = 𝑘𝑐𝑠𝑞𝑙. (25) 

To solve the coefficient kcs, Equation (19) is used. First, the coefficient b is solved using a unit arch, 

span length l = 1. The stress is then solved for different rise ratios. The calculated values of kcs are 

graphically shown in Figure 6. 

2.4.2 Ultimate span length of constant stress arch 

To achieve the maximum span length of a constant stress arch, the arch's height must be increased 

infinitely, resulting in a rise ratio of zero. The ultimate span length based on compressive stress σ can be 

calculated using the following equation (Marano et al. [11]): 

𝑙𝑐𝑠𝑢𝑙𝑡 =
𝜋𝜎

𝑞
. (26) 

3.  Comparison of stresses in parabolic, catenary and constant stress vaults 

In the previous sections, we introduced the stress calculation using the coefficients kp, kc, and kcs. Figure 

6 illustrates stress magnitudes in stand-alone momentless vaults, as shown in the same figure. 

 

Figure 6: Stress coefficients of parabola, catenary and constants stress vault in stand-alone vaults 

Figure 6 shows that as the height of the vaults increases, the stresses become increasingly disparate, 

highlighting the significant advantage of using a constant stress vault. For instance, at a rise ratio of 2, a 
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catenary has twice the stress of a constant stress vault. This knowledge may also prove useful when 

working with materials other than snow, such as cast adobe or brick adobe soil materials.  

4. Snow volumes based on rise ratio 

The volume of material can be calculated using either the length and cross-sectional area or the vertical 

support reactions at the base. The volume of each type of vault, relative to the rise ratio, can be 

determined by solving for the parameter a for catenary and the parameter b for constant stress arch, and 

selecting the cross-sectional area at the apex. The material volume can be expressed as: 

𝑉 = 𝑘𝑖𝐴𝑙𝑙, (27) 

where ki is the volume coefficient of the corresponding vault type, Al is the cross-sectional area at the 

apex and l is the span length. 

Figure 7 shows the snow volumes in different vault types in relation to the rise ratio. The volume 

coefficient for the parabolic vault is kpvol, for the catenary it is kcvol, and for the constant stress vault it is 

kcsvol.  Figure 7 is divided into two parts due to the volume of the constant stress vault changes 

significantly as the height of the vault increases. As the height decreases, the volumes of the catenary 

and constant stress vaults approach the volume of the parabola. 

 

Figure 7: Volume coefficients kpvol, kcvol, and kcsvo, according to the rise ratios 

 5. Vault types compared by span length 

5.1. Illustrative comparison of the arch types 

In the previous section, we presented the characteristics of stand-alone momentless parabola, catenary, 

and constant stress vaults. As an example, we carried out comparative calculations and 3D modelling 

for each type of vault. The snow vaults were designed with equal structural thickness at the crown and 

experience a maximum compressive stress of -0.15 MPa with a rise ratio of 2.0. Figure 8 shows the 

shapes and sizes of the calculated vaults in the same scale. 

 

 Figure 8: Comparison of the dimensions of snow vaults modelled at the same scale. 
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With a unit weight of 0.006 MN/m3 for snow, the span lengths for parabolic, catenary, and constant 

stress vaults are calculated to be 20.000 m, 30.911 m, and 64.624 m, respectively. This indicates that the 

constant stress vault is superior to the corresponding parabolic and catenary vaults.  

 

5.2.  Rise ratio and the shape of constant stress arch 

Figure 9 shows the vaults with rise ratios of 1.5, 2.0, 4.0 and 6.0 when the unit weight of snow is 0.006 

MN/m3. The figure shows also the stresses in the vaults. For a constant stress vault, the span ratio should 

not be below approximately 0.95 to prevent the soffits from intersecting. 

 

 

Figure 9: Examples of constant stress snow vaults with rise ratios of 1.5, 2.0, 4.0, and 6.0. 

5.3. Comparison of extreme span lengths for parabola, catenary and constant stress vaults 

Figure 10 displays the maximum span lengths of the freestanding parabolic, catenary, and constant stress 

vaults based on the maximum compressive stress. The critical point for the parabolic and catenary vaults 

is at the base, while for the constant stress vault, the stress remains constant along the entire vault.  The 

assumed compressive stress limit of the snow is -0.2 MPa, and the unit weight of snow used is 0.006 

MN/m3. The stability of the structure is unspecified.  The arch crown thickness can be chosen arbitrarily 

as it does not affect stress magnitude. The calculation results describe the situation at time t = 0. In this 

case, we assume that the snow compression is eliminated by increasing the horizontal force of the arch 

to match the horizontal force of the uncompressed arch. 
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The maximum span length of parabolic vault according to the height ratio can be solved from Equation 

(6). The maximum span is obtained with a rise ratio l/h of 4.0. The corresponding maximum span for 

the catenary is obtained by applying Equation (10) by solving the parameter a for corresponding rise 

relations. The maximum span is obtained with a rise ratio of 2.96, as shown earlier. The corresponding 

maximum span length of the constant stress arch can be solved by applying Equation (19). The ultimate 

span is obtained by applying Equation (26). 

 

 

Figure 10. Calculated comparative maximum span lengths of the parabolic, catenary and constant stress snow vaults. Elastic 

and viscous compression has been eliminated. 

Figure 10 shows the differences between the vaults. The difference increases as the height of the arch is 

increased. As the height is reduced, the catenary and constant stress vault approaches the parabolic vault. 

 

6. Discussions 

Snow vault structures require the elimination of elastic and viscous compression of snow to achieve the 

ideal shape. This can be achieved temporarily by increasing the thrust force of the vault through the 

installation of hydraulic jacks or reducing the distance between the supports. It may become necessary 

to increase the thrust again as compression increases over time. 

Snow vault is highly sensitive to rapid settlement due to its viscous behaviour, which causes a change 

in shape and result in bending and shear forces that may make it unsafe to use.  Computational methods 

can be used to calculate viscous deformations (RIL [3]). The viscosity of snow is heavily dependent on 

its density. When constructing vault structures, it is advisable to use the densest snow available 

(Ryynänen [4]). The settlements shall be monitored during its life time. Additional research is required. 

7. Summary 

The constant stress vault is considered the most efficient type of snow vault.   However, current 

instructions for snow structures do not yet recognize its superiority over other vault types, particularly 

when the height of the vaults is increased.  

The calculations show that stress levels in constant stress vaults are minimized, allowing for the 

construction of reasonable spans using materials with low compression strength. This knowledge could 

potentially open up the possibility of building temporary, affordable housing using adobe soil material 

or recycled materials that are locally available. However, additional research is required. 

In snow vaults, the heaviest load is typically the dead load. The shape of the vault significantly affects 

its load-bearing capacity. Settlements should be monitored, and the bearing capacity calculated based 

on the altered shape. 
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