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Abstract

This work presents a method for designing efficient tensegrity structures. It uses a discrete topology op-
timization algorithm to analyze candidate structural members within a ground structure. The problem is
formulated as a mixed-integer linear program to provide binary choices about which candidate members
are selected in the final design and whether each member is undergoing tensile or compressive forces.
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1. Introduction
Long-span space truss and shell structures present exciting design opportunities. This includes the possi-
bility of creating tensegrity structures. These designs isolate thick compression members by surrounding
them with thin tension members on both ends, providing the appearance of floating compression mem-
bers. The Kurilpa bridge is an example of a tensegrity-inspired design. It is shown in Fig. 1. The
horizontal members running perpendicular to the deck are seen to have this floating appearance.

Figure 1: The Kurilpa Bridge in Brisbane, Australia, is a tensegrity-inspired design [1].

To create architecturally distinctive tensegrity designs, it is critical to control the force flow through the
structure. Topology optimization lends itself nicely to this problem by providing structurally efficient,
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lightweight design solutions. Traditional continuum formulations of topology optimization generally
seek to maximize the stiffness of a structural design while constraining the material usage [2]. However,
modeling long spans as a continuum requires lots of elements. This can make efficient computation
challenging and make it difficult to identify constructible structural solutions [3], [4]. Using a discrete
approach to topology optimization provides a remedy to this issue. In discrete topology optimization,
larger truss and shell elements are used to construct a ground structure of candidate members that fill the
design space [5]. Fig. 2 illustrates the difference between these two methods for a simple example from
Bendsoe and Sigmund [2].

Figure 2: Discrete (top) versus continuum (bottom) topology optimization [2].

This work models ground structure design spaces using a mixed-integer formulation. Previous work has
shown that adding mixed-integer variables offers exciting new opportunities for optimization results [6],
[7]. An array of materials with different structural properties can be considered by assigning binary on
or off values for each material at each candidate member. This can create hybrid designs that provide
unique results to a design problem. By leveraging the specific properties of each material, the algorithm
can generate designs with intelligent force flows, such as those needed to create a truss connectivity that
fulfills the tensegrity definition.

While mixed-integer problems have historically been avoided in topology optimization due to their solv-
ing complexity, Kanno [8] presents a method for designing tensegrity structures using a mixed-integer
approach. Kanno’s formulation solves a minimum compliance problem instead of the minimum material
problem addressed by Nanayakkara et al. [9] and this paper. The formulation seen in this work presents
an intuitive way to address the multiple element-type problem. Two different materials will be used in
the current problem. All tension members will be designed with steel, while all compression members
will be designed with timber. Additionally, this work implements Gurobi, an efficient commercial solver
for mixed-integer linear programs, to reduce the solving time of the problem.

2. Topology Optimization Formulation
He, Gilbert, and Song [10] propose a formulation for a minimum material discrete topology optimization
problem that serves as the basis for this work. Their formulation is a linear program utilizing continuous
variables and considering one material. This formulation is expanded upon to generate the mixed-integer
linear problem defined in Eq. (1).

There are three sets that index the variables and constants in Eq. (1). The first set, indexed by i,
represents each candidate member in the design space. The total number of members in the design
space is denoted by N . The second set, indexed by k, represents each structural degree of freedom in
the problem. Since this problem implements a truss ground structure, each node at the end of a truss
has three degrees of freedom in three-dimensional spaces. Thus, each truss member i has six structural
degrees of freedom. The total number of structural degrees of freedom for all members is denoted by
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NF . The third set, indexed by j, represents each material. M denotes the total number of materials
considered in the problem. This paper considers two total materials, timber and steel.

This problem includes four design variables. The continuous variable Aij represents the final design
cross-sectional area for each candidate truss member i and material j. The continuous variable aij
represents the intermediate optimization cross-sectional area for each candidate truss member i and
material j. The continuous variable qi represents the force going through each candidate truss member
i. The binary variable zij represents if a candidate truss member i and corresponding material j appear
in the final design.

minimize
A, a, q, z

N∑
i=1

M∑
j=1

liAijCj (1a)

subject to Aij ≤ amax
j zij ∀i = 1, ... , N, ∀j = 1, ... ,M (1b)

Aij ≥ aij − amax
j (1− zij) ∀i = 1, ... , N, ∀j = 1, ... ,M (1c)

N∑
i=1

Bkiqi = Fk ∀k = 1, ... , NF (1d)

qi ≥ −
M∑
j=1

Aijσ
c
j ∀i = 1, ... , N (1e)

qi ≤
M∑
j=1

Aijσ
t
j ∀i = 1, ... , N (1f)

M∑
j=1

zij ≤ 1 ∀i = 1, ... , N (1g)

aij ≥ amin
j ∀i = 1, ... , N, ∀j = 1, ... ,M (1h)

aij ≤ amax
j ∀i = 1, ... , N, ∀j = 1, ... ,M (1i)

Aij ≥ 0 ∀i = 1, ... , N, ∀j = 1, ... ,M (1j)

zij ∈ {0, 1} ∀i = 1, ... , N, ∀j = 1, ... ,M (1k)

The objective function, defined in Eq. (1a), seeks to minimize the material usage of the design. In
this equation, the constant li represents the length of each candidate truss member i. The constant Cj

represents the cost per unit volume of each material j. The linking constraints, defined in Eq. (1b)
and Eq. (1c), map the intermediate optimization cross-sectional areas to the final design cross-sectional
areas. They also ensure that zij is only set to one if a candidate truss member i and material j are selected
for the final design. The equilibrium constraint, defined in Eq. (1d), ensures that all of the forces in
the final design are balanced. The constant Bki represents an entry in the equilibrium matrix for the
associated structural degree of freedom k and candidate truss member i. The constant Fk represents the
magnitude and direction of an applied force at the structural degree of freedom k. For a structural degree
of freedom k where there is no applied force, the corresponding entry Fk is zero. The stress constraints,
defined in Eq. (1e) and Eq. (1f), ensure that no candidate truss member is over-stressed. The constants
σc
j and σt

j represent the compressive and tensile stress limits of each material j, respectively. Since this is
a linear elastic problem assuming small deformations, the largest value that can be used is the material’s
yield stress. To ensure the design is conservative, this can be reduced by a factor of safety. The material
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constraint, defined in Eq. (1g), ensures that a maximum of one material is assigned to a candidate truss
member i. This prevents the design from having members with a mixture of properties from multiple
materials. The material area constraints, defined in Eq. (1h) and Eq. (1i), ensure that the area selected
for a candidate truss member is between the minimum and maximum specified area for each material j.
These constants are defined by amin

j and amax
j , respectively. The constraint defined in Eq. (1j) ensures

that no final design cross-sectional areas are negative.

To design tensegrity structures, the force flow must be controlled to prevent more than one compression
member from connecting to the same node as other compression members entering from different planes
and angles. This approach differs from previous formulations because it retains the no-overlap total
connectivity ground structure scheme, which reduces the total number of design variables in the problem.
This concept is illustrated in Fig. 3, where thick brown lines represent compression members and thin
gray lines represent tension members. The far left compression member is composed of two elements
that are allowed to share a node because they lie in the same line.

Figure 3: Conceptual design of a tensegrity truss layout.

To achieve tensegrity designs, the problem is expanded to include a fifth design variable, z(2)i . This
binary variable is set to one when a candidate truss member selected for the design is in compression
and is set to zero otherwise. This variable differs from zij in that it serves as a force identifier as opposed
to a candidate truss member selection identifier. Since the sign function is not linear, this variable is
introduced to determine the sign of the force in a member and preserve the mixed-integer linear form of
the problem. The constraints in Eq. 2 are added to enforce tensegrity design requirements.

qi ≥ −σc
maxa

max
maxz

(2)
i ∀i = 1, ... , N (2a)

qi ≤
(
σt
maxa

max
max +

σt
maxa

max
maxε

1− ε

)(
1− ε− z

(2)
i

)
∀i = 1, ... , N (2b)

N∑
i=1

Γ
(2)
xi z

(2)
i ≤ N ∀x = 1, ... , N (2c)
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In these equations, the set of candidate truss members is indexed by x in addition to i. Eq. 2a and Eq.
2b serve as linking constraints for the binary force variable. They ensure that z(2)i is only set to one if
a candidate truss member is selected for the final design and undergoing compression. The constants
σc
max, σt

max, and amax
max represent the largest allowable compressive stress, largest allowable tensile stress,

and largest allowable cross-sectional area across all design materials, respectively. The constant ε is a
user-defined small number. It is added to the formulation to ensure that the binary force variable does
not take on a value of one when the force in a member is exactly zero, which is the case for candidate
truss members not selected for the final design. The tensegrity violation constraint, defined in Eq. 2c,
determines which members can exist in the final design to enforce tensegrity principles. The constant Γxi

represents an entry in the relational matrix that verifies if the selected candidate truss members coexist
in a tensegrity state.

This problem is computationally implemented via a Python script. The code for the equilibrium matrix
provided by He, Gilbert, and Song [10] has been expanded to accommodate three-dimensional struc-
tures. This equilibrium matrix is denoted as Bki in Eq. (1d). Apart from this, the code written in the
Python script is entirely original. It constructs the variables, coefficients, objective function, and con-
straints defined in Eq. (1) and Eq. (2) to be readily interpreted by Gurobi, the solver used to generate
optimized design solutions.

3. Tensegrity Design Example
For simplicity, a relatively small tensegrity design example is examined. The design space, shown in Fig.
4a, occupies a rectangular prism measuring three meters in length, three meters in width, and six meters
in height. The design space is supported by pins at two corners of its base, with an additional pin located
at the mid-span of the opposite base edge. The design space is loaded at its top in a triangle opposite the
supports at the base. The five horizontal loads have a magnitude of 0.45 kN directed outwards and the
three vertical loads have a magnitude of 4.5 kN directed downwards. The ground structure, depicted in
Fig. 4b, is created by dividing the design space into forty-five nodes. Three nodes are spaced evenly at
intervals of one and a half meters along both the length and width dimensions. Five nodes are spaced
evenly at intervals of one and a half meters along the height dimension. The ground structure uses a no-
overlap total connectivity scheme between the nodes consisting of eight-hundred-thirty-two candidate
truss members.

(a) Design space. (b) Ground structure.
Figure 4: Tensegrity design example boundary and loading conditions.
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As mentioned, the algorithm is given a choice between two materials for the design: timber and steel.
The compressive strength of the timber is modeled after Douglas fir and set to 8.5 MPa to maintain a
factor of safety below the yield strength. The tensile strength of the steel is set to 300 MPa, which also
incorporates a factor of safety. The tensile strength of the timber and the compressive strength of the
steel are set to zero to ensure that final designs only feature timber in compression and steel in tension.
The lower bound area for steel members is set to 19.35 cm2. The upper bound area for steel members is
set to 193.5 cm2. The lower bound area for timber members is set to 124.2 cm2. The upper bound area
for timber members is set to 322.6 cm2.

The optimized design result is shown from three different angles in Fig. 5. It is seen to fulfill the
tensegrity constraints by preventing multiple compression members that do not lie in the same line from
connecting at the same node. The compression members are found to be similar in size, ranging from
124.2 cm2 to 130.7 cm2. The steel members take advantage of their higher strength and thus have smaller
cross-sectional areas. All steel members take on the minimum cross-sectional area of 19.35 cm2.

(a) View from above the southeast
corner.

(b) View from above the northwest
corner.

(c) View from above the southwest
corner.

Figure 5: Isometric views of the tensegrity design result.

4. Conclusion
This paper set out to implement a mixed-integer formulation of a discrete topology optimization prob-
lem. The algorithm can accommodate the properties of different materials to design lightweight and
efficient structures. The formulation also provides the ability to specify desired force flows through a
structure. This lends itself nicely to creating unique architectural solutions such as tensegrity designs that
give the appearance of floating structural members. By utilizing advanced solvers, formulating highly
constrained topology optimization problems as mixed-integer programs is more feasible than ever.
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