
Proceedings of the IASS 2024 Symposium
Redefining the Art of Structural Design

August 26-30, 2024, Zurich, Switzerland
Philippe Block, Giulia Boller, Catherine DeWolf,

Jacqueline Pauli, Walter Kaufmann (eds.)

Modelling of prestress losses in 3D tendon layout optimization
using strain energy minimization

Hanna DOMNICK *, Juan Pablo OSMAN-LETELIER a
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Abstract

This paper addresses the tendon layout optimization in spatial thin-walled concrete structures, building
on the results achieved in [1] and [2]. Unlike previous work, which assumed a constant prestressing
force along the tendon, this investigation considers prestress losses in similar structures and bound-
ary conditions. Prestress losses are modeled as a function over the beam-like structure’s length and
subtracted from the initial prestressing force. Consequently, the resulting function for the prestressing
force becomes dependent on the tendon layout and position along the beam-like structure. Using mod-
els for prestress losses presented in current literature, e.g. in [3], this paper outlines the calculation of
these losses, the underlying assumptions, simplifications, and their practical implementation in a Matlab
script. As study cases, a two-dimensional tendon layout in a beam and a three-dimensional tendon layout
in a folded slab are investigated. The comprehensive approach presented in this paper provides a more
accurate and realistic representation of the structural behavior in spatial prestressed concrete structures
and their optimization. Thus, it enhances the understanding of the associated complexities and con-
tributes to advancements in structural engineering and saving material through structural optimization,
which is in the eyes of the authors a key component in redefining the art of structural design.
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1. Introduction
In previous work, Domnick and Osman-Letelier [1] proposed a new optimization method for spatial ten-
don layouts based on strain energy minimization. By applying the Rayleigh-Ritz method and Lagrange
multipliers, the method identifies a tendon layout in a thin-walled concrete structure that complies with
practical boundary conditions and minimizes the structure’s deflection. Domnick and Osman-Letelier [1]
successfully optimized tendon layouts in thin-walled concrete structures with a variety of support con-
ditions and design constraints. However, thus far, a constant prestressing force has been assumed, not
taking into account prestress losses. Prestress losses reduce the prestressing force by up to 40% [3]
or even 60% [4]. Hence, not considering them in the design stage can substantially weaken or even
eliminate the tendon’s effectiveness. Therefore, this paper extends the proposed method to the consid-
eration of prestress losses. Considering prestress losses during the optimization enables the engineer to
counteract not only the structure’s deflection but also prestress losses along the tendon.

Prestress losses in post-tensioned structures occur instantly as well as over time and depend on various
parameters regarding the structure’s geometry and material, as well as ambient conditions and loading.
There are several methods and approaches to determining those losses, ranging from rough estimations
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for early design stages to more precise analytical or experimental calculations [3, 4, 5]. However, only
few investigations have considered spatial tendon layouts. One notable study that investigates the esti-
mation of friction losses for spatial tendons in a curved, prestressed bridge is by de Roeck [6].

2. Prestress Losses
The effectiveness of prestress depends heavily on the correct estimation of the prestressing force. Un-
derestimating it can result in excessive camber and an inefficient design, while overestimating it may
cause excessive deflection, resulting in unexpected cracks and a reduction of the structure’s durability.
The prestressing force is not constant throughout the tendon. It decreases due to geometric and material
influences along the tendon and over time due to the materials’ response to the applied stresses. The
difference between the initial prestressing force and the resulting force in the tendon is described by the
term prestress losses. These are grouped into instant losses and time-dependent losses. Instant losses
include those due to friction, anchorage grip and elastic deformation. Time-dependent losses occur as a
result of steel relaxation, concrete shrinkage as well as concrete creep.

When tensioned, the tendon is pressed against the surrounding material. The friction between ten-
don and surrounding material leads to a decrease in the resulting prestressing force within the tendon.
These losses depend on the tendon’s layout, especially the tendon’s curvature, as a stronger curvature in-
creases the friction. Losses due to elastic deformation occur due to the elastic lengthening of the tendon
and shortening of the concrete. These losses depend on material parameters, e.g. their elastic moduli.
Time-dependent losses due to creep, shrinkage and relaxation are mainly influenced by the timing and
magnitude of the applied loads, the chemical composition of the concrete and the ambient conditions.
The tendon layout has a minor influence on time-dependent losses. [3]

3. Definition of the optimization problem
The general formulation of the optimization problem is shown by Domnick and Osman-Letelier [1].
The complete constrained optimization problem for a spatial tendon layout that is described by the
curve r : R → R3 is defined as follows:

Minimize
r

JP subject to g = 0 (1)

Find r̃ : R → R3 with lim
n→∞

r̃ = r (2)

by solving ∇L = 0 for a ∈ Rn (3)
with L(a) = JP (a) + λ · g(a) (4)

JP =

∫
L
(ME(x) +MP (a, x))

2 dx (5)

r̃(a, x) =

[
r̃x
r̃y
r̃z

]
=

[ x
fy

(
x,aTϕ(x)

)
fz

(
x,aTϕ(x)

)
]

(6)

ϕi(x) = xi−1 (7)
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Figure 1: Model of a prestressed spatial beam-like structure and the internal forces due to prestress.
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The objective function is JP : R3 → R. The constraints are described by g : R → R3. The Ritz-
polynomial r̃ approximating the tendon layout is defined by its order n ∈ R and its coefficients a ∈ Rn.
ME : R → R and MP : R → R are the moments due to external loads (e) and prestress (p) respectively.
ME depends on the static system, loading and the structure’s geometry. MP depends on the tendon
layout and the prestressing force. The functions fy : R → R and fz : R → R are the components of
the surface function S(u, v) = [u, fy(u, v), fz(u, v)]

T and describe the cross-section of the thin-walled
concrete structure. The vector function P : R → R3 describes the prestressing force with magnitude

P (x) = |P (x)| ∈ R (8)

The prestressing force is always directed in the same direction as the tendon.

P (x) = P (x)
r′(x)

|r′(x)|
(9)

In this paper, only the moment about the y-axis is considered. It is assumed that the tendons are arranged
symmetrically along the y-axis, so that no moment occurs about the z-axis.

MP,y(x) = −PH(x) rz(x) = −P
rz r

′
x√

r′2x + r′2y + r′2z

(10)

3.1. Consideration of losses during the optimization

As described above the prestressing force in the tendon is reduced by prestress losses. These losses
may change along the tendon. Thus, instead of a constant prestressing force as assumed by Domnick
and Osman-Letelier [1], it changes along x and depends on loss specific parameters. With the initial
prestressing force P0 and the prestress losses ∆P , the prestressing force P is described by

P (x) = P0(x)−∆P (x) (11)

Assuming the prestressing force is always directed in the direction of the tendon allows for the following
transformation

|P | r′

|r′|
= |P0|

r′

|r′|
− |∆P | r′

|r′|
⇒ |P | = |P0| − |∆P | (12)

Thus, it is sufficient to consider its magnitude

P (x) = P0 −∆P (x) (13)

3.2. Losses due to friction

3.2.1. Calculation of friction losses

Friction losses directly derive from the tendon layout. Consequently, taking these prestress losses into
account during the tendon layout optimization has a great benefit for the achieved design as the resulting
losses can automatically be counteracted by the tendon layout itself. This is why, in this paper, the
effects of friction losses are considered as an example to be included in the optimization process.

∆P (x) = ∆Pµ(x) (14)

Combining equations (13) and (14) leads to the following resulting prestressing force in the tendon

P (x) = P0 −∆Pµ(x) (15)
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The friction between the tendon and the surrounding material depends on the prestressing force P , the
angle ϑ and the friction coefficient µ between tendon and surrounding material. Generally, the variation
of the force as shown in Figure 2 is described by the following differential equation [3]:

dP

dϑ
− µP = 0 (16)

dϑ

dP = µP dϑP

P + dP

dϑ

Figure 2: Variation of the prestressing force P due to friction in an infinitesimal element of the tendon.

The general solution of equation (16) is described by the EULER-EYTELWEIN equation [3]:

Phold = Pload e
−µϑ (17)

Where Phold is the resulting force P (x) under the influence of friction along the tendon and Pload is the
initial force P0. The angle ϑ(x) describes the accumulated angle deviation up to the point x along the
tendon.

P (x) = P0 e
−µϑ(x) (18)

Combining equations (15) and (18) results in

∆P (x) = P0

(
1− e−µϑ(x)

)
(19)

Friction losses depend on the layout of jacking and anchoring. In this paper, jacking from one end
is assumed. As shown in Figure 3, for jacking from one end the maximum friction losses ∆Pµ,max

equal Pjack − Panchor, where Pjack is the initial prestressing force applied at the jacking. Panchor is the
prestressing force at the anchor of the tendon at the other end of the structure.

0 L

Panchor

P0 = Pjack
P0 e

−µ ϑ(x)

x

P

Figure 3: Prestressing force under the influence of friction for jacking from one end.

3.2.2. Calculation of total angle deviation ϑ(x)

In order to determine friction losses, it is necessary to calculate the total angle deviation of the tendon
denoted as ϑ(x), which can be calculated as follows:

ϑ(x) = θ(x, r) + k x (20)

4



Proceedings of the IASS Annual Symposium 2024
Redefining the Art of Structural Design

In equation (20) θ(x, r) is the accumulated angle deviation due to the layout of the spatial tendon (in-
tended angle deviation) and k is the wobble coefficient that accounts for unintended angle deviation
due to minor deviations from the intended profile. Values for the wobble coefficients are given by the
manufacturers for example in the European Technical Assessment (ETA).

The total angle deviation θ along the tendon in the two-dimensional case (tendon lies in the xz-plane)
is described by equation (21), as the tendon is only curved with respect to the y-axis. Considering its
absolute value accounts for the accumulation of the angle, independent of its sign. Note, that for small
angles s can be approximated by x.

θ(s) =

∫ s

s0

∣∣∣∣dθds̃
∣∣∣∣ ds̃ (21)

dθ

ds
≈ dθ

dx
=

d

dx

d rz
dx

=
d2 rz
dx2

(22)

θ(x) =

∫ x

x0

∣∣r′′z (x̃)∣∣ dx̃ (23)

In folded slabs as in Figure 4 the spatial tendon lies in a tilted plane. This means it is curved with
respect to one axis, i.e. not doubly curved. However, in contrast to the two-dimensional case described
above, this is not necessarily a coordinate axis. Therefore, it is not sufficient to consider rz in order
to calculate θ as in equation (23). For folded slabs, the angle θ can be calculated by transforming the
tendons coordinate system as follows.
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Figure 4: Curvature of a tendon in a folded slab.

Figure 4 shows that in a folded slab the tendon is restricted to the tilted plane defined by the angle α to
the xz-plane. As shown by Domnick and Osman-Letelier [1] the tendon is described by

r(x) =

rxry
rz

 =

 x

− tan(α) rz
rz

 (24)
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For such a tendon a plane with coordinate system x̂, ŷ, ẑ exists, so that the coefficient rŷ disappears and
the curvature is completely described by the coefficient rẑ

r̂(x) =

rx̂rŷ
rẑ

 =

rx̂0
rẑ

 (25)

For a folded slab this plane equals the tilted plane described by the rotation angle α around the x-axis.
This means by rotating r(x) with the rotation matrix around the x-axis

Rx(φ) =

1 0 0

0 cos(φ) − sin(φ)

0 sin(φ) cos(φ)

 (26)

by an angle φ = −α the form described in equation (25) can be achieved as follows:

r̂(x) = Rx(−α) r(x) =

1 0 0

0 cos(−α) − sin(−α)

0 sin(−α) cos(−α)

rxry
rz

 =

 rx
cos(α) ry + sin(α) rz
− sin(α) ry + cos(α) rz

 (27)

With

ry = − tan(α) rz = − sin(α)

cos(α)
rz (28)

and cos(α) = cos and sin(α) = sin equation (27) yields

r̂(x) =

 rx
− cos sin

cos rz + sin rz
− sin ry + cos rz

 =

 rx
− sin rz + sin rz
− sin ry + cos rz

 =

 rx
0√

(− sin ry + cos rz)
2

 (29)

=

 rx
0√

sin2 r2y − sin cos ryrz − sin cos ryrz + cos2 r2z


=

 rx
0√

sin2 r2y −
(
− cos

sin

)
sin cos ryry −

(
− sin

cos

)
sin cos rzrz + cos2 r2z


=

 rx
0√

sin2 r2y + cos2 r2y + sin2 r2z + cos2 r2z

 =

 rx
0√(

sin2+cos2
) (

r2y + r2z
)


=

 rx
0√

r2y + r2z

 (30)

Equation (30) demonstrates that the rotated tendon r̂(x) has no eccentricity to the tilted plane (rŷ = 0)

and the angle θ is described by the coefficient rẑ . Furthermore, r̂(x) has exactly the expected form as
stated in equation (25). With rx = x the accumulated angle deviation is then described by

θ(x) = θŷẑ(x) =

∫ x

x0

∣∣∣∣d2rẑ(x̃)dx̃2

∣∣∣∣ dx̃ =

∫ x

x0

∣∣rẑ ′′(x̃)∣∣ dx̃ =

∫ x

x0

∣∣∣∣(√r2y(x̃) + r2z(x̃)
)′′

∣∣∣∣ dx̃ (31)
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Combining equations (15), (19), (20) and (31) leads to the following description of the prestressing force
along the spatial tendon in a folded slab with consideration of prestress losses due to friction, extending
the solution algorithm described by equations (1) to (7).

P (x) = P0 −∆Pµ(x) (32)

with ∆Pµ(x) = P0

(
1− e−µ ϑ(x)

)
= P0

(
1− e−µ(θ(x,r)+k x)

)
(33)

and θ(x, r) =

∫ x

x0

∣∣∣∣(√r2y(x̃) + r2z(x̃)
)′′

∣∣∣∣ dx̃ (34)

4. Examples
Two examples of tendon layouts in thin-walled concrete structures with the consideration of prestress
losses are presented. The results are obtained by implementing the algorithm described in section 3
(equations (1) to (7) and (32) to (34)) in MATLAB (©MathWorks, Version R2023b). The built-in func-
tions vpaintegral and vpasolve are used to solve the integral in JP and the system of equations ∇L = 0.

For both examples, the following parameters concerning geometry, loading, and degree of the polyno-
mial are defined: L = 30 m, H = 5 m, k = 0, 005, g1 = 3 kN

m , g2 = 4 kN
m , q = 2 kN

m , n = 16.
A simply supported beam as shown in Figure 5 without geometrical constraints is considered. To fully
utilize the vertical space available, an optimal initial prestressing force P0 is chosen for each example.

g1, g2, q

L

x
ME (x) = 1

2 (g1 + g2 + q) x (L − x)

Figure 5: Static system and loading for a simply supported beam.

The effectiveness of the optimized tendon layout is compared to a common alternative design approach:
a simplified solution that ignores the gradient of the tendon (r′i(x) ≈ 0 for slender beams)

rsimp(x) =

 x

fy(x)

ME(x)/P0

 (35)

4.1. Optimization of a planar tendon layout in a T-beam

In a T-beam, as shown in Figure 6, the tendon is located in the xz-plane with fy = 0 and fz = v. With
v = aTϕ(x) this leads to the following approximation for the tendon:

r̃(x) =

 u

fy
fz

 =

u0
v

 =

 x

0

aTϕ(x)

 (36)

r
H

L
x

yz

Figure 6: Model of a simple beam with a planar tendon layout in the xz-plane.
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Figure 7 shows the optimized tendon layout considering an initial prestressing force of P0 = 440 kN .
The objective function has been minimized to JP = 2, 4 · 10−6 (kN m)2m. The total prestress losses
due to friction, as shown in Figure 9, accumulated to ∆Pmax/P0 = 16% at the right end of the beam.

Figure 7: Optimized planar tendon layout in a T-beam.
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Figure 8: Bending moments due to external loads and prestress.
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Figure 9: Initial prestressing force P0

and prestressing force with
consideration of friction losses P (x).
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Figure 10: Vertical component rz of the optimized tendon layout in comparison to the simplified approach
according to equation (35).

4.2. Optimization of a spatial tendon layout in a folded slab

The tilted plane of a folded slab, as shown in Figure 11, is described by the functions fy = − tan(α) v

and fz = v. In the example an angle α = π
4 was chosen. With v = aTϕ(x) this leads to the following

approximation for the tendon:

r(x) =

 u

fy
fz

 =

 u

− tan(π/4)v

v

 =

 x

−aTϕ(x)

aTϕ(x)

 (37)
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Figure 11: Model of a folded slab with a spatial tendon layout.

Figure 12 shows the optimized tendon layout considering an initial prestressing force of P0 = 451 kN .
The objective function has been minimized to JP = 3, 4 · 10−3 (kN m)2m. The total prestress losses
due to friction, as shown in Figure 14, accumulated to ∆Pmax/P0 = 22% at the right end of the beam.

Figure 12: Optimized spatial tendon layout in a folded slab.
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Figure 13: Bending moments due to external loads and prestress.
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Figure 14: Initial prestressing force
P0 and prestressing force with

consideration of friction losses P (x).
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Figure 15: Vertical component rz of the optimized spatial tendon layout in comparison to the simplified approach
according to equation (35).
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4.3. Analysis and comparison of the results
The obtained results demonstrate that the optimized tendon is able to fully counteract the friction losses.
For both study cases the remaining moment Mp + Me is reduced to practically 0% of the maximum
moment by the optimized tendon layout (see Figures 8 and 13). In comparison, a tendon layout designed
with the simplified approach and without considering friction losses results in a remaining moment
Mp,simp+Me of up to 9% and 12%. The objective function JP as an indicator for the solution’s quality
was reduced to values of less than 10−2 (kNm)2m. The absolute difference between the optimized
tendon layout and the simplified approach (see Figures 10 and 15) is about 25 cm for the T-beam and 33
cm for the folded slab. This equals about 10% and 13% of the maximum eccentricity of the tendon.

The structures in both study cases have the same span, height and loading. Solely the additional
horizontal eccentricity and curvature of the tendon in the folded slab increased the friction losses by
(22%− 16%)/16% = 37%. This shows the high impact of the spatial layout of the tendon, demonstrat-
ing the importance of its consideration during the design stage.

5. Conclusion
In this paper, the optimization method for spatial tendon layouts in thin-walled concrete structures,
which was successfully applied in the past by Domnick and Osman-Letelier [1] for a constant pre-
stressing force, has been extended to include the consideration of prestress losses. The concept for the
consideration of prestress losses in general was shown and the formulation of the optimization method
extended accordingly. Friction losses were investigated more in depth as they directly derive from the
tendon layout and its curvature. The results of the presented study cases, a two-dimensional tendon
layout in a beam and a three-dimensional tendon layout in a folded slab, demonstrate that the optimized
tendon layouts are able to fully compensate the loss in prestress by friction losses.

The comprehensive approach presented in this paper provides a more accurate and realistic representa-
tion of the structural behavior in prestressed spatial concrete structures and their optimization. Prestress
losses reduce the effectiveness of prestress in a structure substantially. By reliably compensating them in
the design stage, more robust and efficient structures are possible. Thus, by enhancing the understanding
of the associated complexities, the presented approach contributes to advancements in structural engi-
neering and saving material through structural optimization, which is a key component in redefining the
art of structural design.
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