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Abstract 

We consider hierarchical truss optimization problems with a novel perspective on local and global 

stability, following the metamaterial paradigm of additive manufacturing. Using modular components 

for hierarchical truss fails to exploit the full mechanical potential, while geometric and topology 
optimization with structural hierarchy is a major challenge. Global stability analysis makes the 

optimization problem highly nonlinear and leads to nonconvex semidefinite programming. Given the 

unprecedent geometric flexibility of 3D metal printing, we propose the recursive construction of 
hierarchical truss across multiple scales, ranging from the building scale to the finest manufacturing 

resolution. By replacing an instable two-force member with a fusiform truss, the local buckling behavior 

characterized by Euler’s critical load is transformed as the global buckling phenomenon associated with 

the positive semidefinite condition of geometrical stiffness matrix. Numerical examples demonstrate 
that hierarchical truss structures effectively save materials compared with conventional designs. The 

hierarchical truss is a promising prototype for the metamaterials under axial compression. Large-scale 

metal truss structures built with 3D-printed members could find multiple applications. 

Keywords: Hierarchical Structure, Truss, Global Stability, Additive Manufacturing, Semidefinite Programming 

1. Introduction 

Many natural and artificial objects consist of structures on more than one scale [1]. A structural unit of 
these objects often has its own sophisticated structure. This structural hierarchy significantly influences 

the global behaviors of the material at a macroscopic level [2]. Hierarchical truss structures have been 

widely used in architecture and bridge design. One celebrated example is the Eiffel Tower [3]. Each 
truss member in the tower reveals itself as a smaller truss at a lower scale, and each sub-member within 

the lower-scale truss is another truss. Such fractal structure could facilitate practical construction by 

employing smaller members, and the resultant complex structure achieves efficiency of material use 

with desired strength [4]. 

Recent researches [5-7] have improved the mechanical efficiency of hierarchical structures. Under 

certain compliance constraint and without stability constraints, a solid slender rod is perfect as 

compressive two-force member. However, the rod needs to be stable against Euler’s critical load when 
introducing the stability constraint. Such redesign process can be formulated as an optimization problem 

as follows. Given a compressive force F applied at two end points separated by a distance L, what 

geometry minimizes the volume V required to withstand F? A particular structure of fractal truss was 
proposed by Farr [8,9] to solve this problem, demonstrating its high efficiency subjected to compressive 

forces. Although manufactured through 3D printing with freeform geometry, their final structure is still 

composed of modular members, which limits the full potential of hierarchical structures. 

Cutting-edge 3D printing technology enables scientists to create metamaterials with customized 
behaviors at each level of scales [10]. Multiscale materials with structural hierarchy have blurred the 

boundary between material science and structural engineering [11-13]. Given the unprecedent geometric 
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freedom from 3D metal printing [14], this research proposes a recursive process for hierarchical metal 

truss that covers multiple scales, ranging from the building scale (10 m) to manufacturing resolution 

(say 30 µm). Within the hierarchical truss structure, each smaller truss acting as a single member in its 
upper hierarchy should maintain a global buckling stability against expected axial loads, and each finest 

bar (at the bottom hierarchy) has to be stable against Euler buckling. We tackle global stability 

constraints with a linear buckling model formulated as a nonlinear semidefinite programming problem 

[15,16]. The model has been employed for advanced truss optimizations [17-19].  

The paper is organized as follows. Section 2 presents the two optimization models and proposes the 

recursive construction method. Section 3 introduces numerical examples and a 3D-printed mock-up to 

demonstrate the feasibility of the proposed method, with comparison to conventional designs. Section 4 

discusses the model limitations, metamaterials with additive manufacturing, and future works. 

2. Methods 

This section introduces the formulation of the truss optimization problems considering stability 

constraints. Two models for the minimum volume truss optimization are presented. One includes both 

local and global buckling constraints; the other only contains global buckling constraints. Integrating 

the two models leads to the recursive algorithm for hierarchical truss construction. 

The truss structure in this work is treated as:  

(1) a discrete assembly of two-forces bars connected by pinned joints. Its mechanical behavior can be 
modeled by a system of linear equations with the principles of statics and linear elasticity. The global 

stability is associated with the positive semidefinite conditions of its geometrical stiffness matrix. 

(2) a continuum body of porous material with inner fractal structures, which is optimized for bearing 

axis compression. The local behaviors can be approximated as a linear bar or a fusiform truss. 

2.1. Stability of Truss Structures 

The geometry of the truss is defined by n nodes and m bars in the 3-dimensional Euclidean space. The 

design variables consist of the coordinates of the nodes vi, for i = 1, 2, ..., n, and the cross-sectional areas 

aj, for j = 1, 2, ..., m. The cross-sections of bars are circular. Let c = 3n-n0, where n0 denotes the number 

of fixed degrees of freedom. 

Given an external load F∈Rc , the corresponding nodal displacement u∈Rc follows the linear 

equilibrium equation: 

  𝐾(𝑎, 𝑣)𝑢 = 𝐹 (1) 

Where K (a, v) is the stiffness matrix (see Hutton [20] for details). The internal force fj in the j-th bar is: 

 𝑓𝑗 =
𝐸𝑎𝑗

𝑙𝑗
𝛾𝑗𝑢  (2) 

Where E denotes the Young’s modulus of the material, lj and γj are the length and direction cosine vector 

of the j-th bar, respectively. The critical buckling load Pj of the j-th bar is given by Euler’s formula [21]: 

 𝑃𝑗 =
𝜋2𝐸𝐼𝑗

𝑙𝑗
2   (3) 

Where Ij denotes the second moment of area of the cross section of the j-th bar. If the j-th bar is under 

compression (internal force fj is negative), |𝑓𝑗| < 𝑃𝑗 holds as the local stability constraint.  

Besides individual bars, the truss itself should be strong enough concerning global buckling. We adopt 

the prebuckling model [17,18], which simplifies the relationship between displacements and applied 

loads near buckling. The model is formulated as a semidefinite programming problem: 

 𝐾(𝑎, 𝑣) + 𝜆𝐺(𝑎, 𝑣, 𝑢) ≽ 0 (4) 

Where G (a,v,u) is the so-called geometrical stiffness matrix: 

 𝐺(𝑎, 𝑣, 𝑢) = ∑
𝑎𝑗𝐸𝛾𝑗𝑢

𝑙𝑗
2

𝑀
𝑗=1 (δ𝑗δ𝑗

𝑇 + η𝑗η𝑗
𝑇)  (5) 
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Where δj, ηj and γj form an orthogonal frame, the details for choosing vectors δj and ηj refer to Alexis 

[22] and Weldeyesus [23]. Constraint (4) ensures that the truss is stable under the load λF, which means 

that the given design load factor λ should be at least 1. 

2.2 The Two Models for Truss Optimization 

Modelα for the minimum volume optimization consists of both local and global stability constraints: 

minimize        ∑  𝑙𝑖𝑎𝑖
𝑀 
𝑖=1  

subject to        𝜁𝑚𝑖𝑛  ≤ 𝐹𝑇𝑢 ≤ 𝜁𝑚𝑎𝑥  

𝐾(𝑣, 𝑎) + 𝜆𝐺(𝑣, 𝑎, 𝑢) ≽ 0  

|𝑓𝑖| ≤ 𝑃𝑖 ,     𝑖𝑓 𝑓𝑖 < 0 , ∀𝑖 = 1,2, … 𝑚  

𝑓𝑖 ≤ 𝜎0𝑎𝑖  ,     ∀𝑖 = 1,2, … 𝑚  

𝑎𝑖 > 0,    ∀𝑖 = 1,2, … 𝑚   

Where ζmin and ζmax are the given compliance bounds, σ0 is the given stress limit related to the material.  

The truss obtained by solving problem (6) yields an optimal truss of a single hierarchy. Subdividing its 
bars into smaller trusses cannot improve material efficiency, since the bars are already stable according 

to Euler’s formula. Any subdivision variations actually reduce their stiffness using the same volume of 

materials.  

To create a new design space for more efficient structure, modelβ treats the stability constraints across 

multiple scales. Removing local stability constraint ( |𝑓𝑖| ≤ 𝑃𝑖 ) from problem (6) results in the 

optimization problem only concerning global stability. The optimal truss obtained by modelβ probably 

contains instable bars under compression. To achieve stability, any instable bar should either use bigger 
cross-sectional area (requiring additional material use) or be subdivided into a truss so that the local 

stability problem is transformed as the global stability problem at a lower scale. 

2.3 Recursive Construction of Hierarchical Truss  

This section introduces the recursive algorithm using modelα and modelβ to construct hierarchical truss. 

Let T denote a truss obtained by modelβ, which contains instable members under compression. These 
linear members are further subdivided into new trusses to gain stability. Let bj and tj denote the j-th 

member and the new truss which replaces the j-th member in T, respectively. 

Let fj, lj and aj denote the internal force, length and cross-sectional area of bj, respectively. Optimizing tj 

as a free body requires data of bj , including fj, lj and aj. The new truss tj contains the two end points of 
bj, one of which is assumed as a freely hinged support during the free-body optimization. An axial 

compression force applied at the free end, which is equal in magnitude to fj (considiered as the external 

load Fj of tj). The stiffness kj of bj is computed as: 

 𝑘𝑗 =  
𝑎𝑗 𝐸

𝑙𝑗 
    (7) 

Truss tj should maintain the same stiffness as bar bj, (otherwise the structure will not comply with the 

compliance and global stability constraints). For ease of finding mathematical solution, its stiffness is 

allowed to fluctuate within a range of plus or minus 5%. The compliance bound ζ j-min and ζ j-max of tj are: 

 𝜁𝑗−𝑚𝑖𝑛 = 0.95 
𝑓𝑗 

2

𝑘𝑗 
, 𝜁𝑗−𝑚𝑎𝑥 = 1.05 

𝑓𝑗 
2

𝑘𝑗 
 (8) 

The process of subdividing the instable members is concluded in Algorithm1. 

Gα(T
β

i) and Gβ(T
β

i) produces Tα
i+1 and T

β
i+1, respectively. Tα

i+1 won’t be subdivided as it is both locally 

and globally stable. While Tβ
i+1 will be processed by Algorithm1 again. This process continues until the 

minimum bar diameter approaches manufacturing limit. The stopping criterion is that the numbers of 
bars in Tβ

i and Tβ
i+1 are the same. The feasible solution set of hierarchical truss includes Tα

1 to Tα
i, in 

a,v 

(6) 
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which the optimal structure is the one with minimal material volume. Tα
i is the i-th generation truss of 

the recursive algorithm. The recursive process is presented in Algorithm2 and Figure 1. 

Algorithm1 Subdivision Process of Instable Bars 

x∈{α, β} 

Gx (T):  

T’ ← ∅ 

For bj in T: 

If bj is instable under compression force: 

Use modelx to optimize tj  

Add tj to T’ 

Else: 

Add bj to T’ 

Return T’ 

Algorithm2  Constructing Hierarchical Truss 

i ← 0 

H (Tβ
i): 

Tα
i+1 ← Gα(T

β
i) 

Tβ
i+1 ← Gβ(T

β
i) 

 If Tβ
i+1 contains more bars than Tβ

i: 

H (Tβ
i+1): 

 Else 

        End  

 

 
Figure 1: Recursive method for constructing hierarchical truss. 

3 Numerical Experiments 

This section presents two numerical experiments of hierarchical trusses to demonstrate the effectiveness 

of the recursive construction. One particular topology of truss replacing instable bars is introduced. This 

work assumes the material properties of titanium alloy TC4, a common material used in metal 3D 

printing [24]  (E = 110 GPa, σ0 =950 MPa). In all cases, the design load factor λ = 1, the manufacturing 

limit is 0.1mm. 

3.1 Topology and Parametrization 

For comparable analysis, the truss topology of Farr’s research [9] is adopted to replace instable bar in 

the recursive process. The topology consists of a regular tetrahedron at each of its ends, with a series of 
w regular octahedra in between, as shown in Figure 2 for the case w=8. The structure contains 3w+5 

nodes and 9w+9 members of equal length.  

A compressive load F is applied to the two ends of the truss along the central axis. The bars parallel to 

the yz-plane (blue segments in Figure 2) are under tension; the rest members marked in red are under 
compression. Due to the symmetry between the truss and the compressive load, the coordinates of the 

nodes can be represented as the scaling triangles in yz-plane (in blue) and the distance between them. 

Let d∈R+w+2 denote the distance between a pair of neighboring triangles in the yz-plane, and s∈R+w+1 

denotes the scaling ratio of the triangles. The value of ∑ 𝑑𝑖
𝑤+2
𝑖  is fixed, and the reference point for 

scaling is located at the center of each triangle. The node coordinates vi, i = 1, 2, ..., 3w+5, can be 

computed with variable d and s.  

To better illustrate different structures derived from modelα and modelβ, the numerical experiment of a 

single-hierarchy truss is conducted before the recursive subdivision.   

Consider a truss with w=10 and a length of 1000mm. The equivalent stiffness k=600 N/mm remains 

unchanged and different external load F is tested. The compliance bound ζ is given by (8). Figure 3(a) 
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and Figure 3(b) show the results by modelα and modelβ, respectively. The obtained trusses are fusiform 

shaped, i.e., the scaling ratio of the triangles peaks in the middle and vanishes at both ends. And as the 

external load force increases, the biggest scaling ratio increases as well, making a fatter fusiform. 

 

Figure 2: The topology and the parametrization for the truss to be optimized. 

 

Figure 3: Single-hierarchy truss:(a) trusses derived from modelα; (b) trusses derived from modelβ.   

3.2 Case I 

The experiment treats a single bar b0 of length L=1000 mm, cross-sectional area a = 5.455 mm2. An 

axial compressive load of F=3000 N is applied. The stress of the bar does not exceed the stress limit σ0, 

but the bar is not stable under Euler’s buckling. A solid cylindrical bar has a material volume V0= 228225 
mm3 to be stable under load F. In this example, the single bar will be replaced with hierarchical truss 

structures and the obtained results will be compared with V0. 

Let Tβ
0 = {b0} denote the input of Algorithm2. Figure 4(a) and Figure 4(b) show the result of using the 

initial truss with w=10 for the first generation. The red segments denote the instable compressive 
members that need to be replaced. Different values of m for topology are enumerated in the optimization 

process of each member, and the one offering the smallest material volume is adopted. Figure 4(c) to 

Figure 4(e) show the structures generated from the second and third generation. The minimum bar 

diameter of the fourth generation is smaller than manufacturing limit, so the recursion terminates.  

In the first generation, various topology with w ranging from 10 to 20 is tested. The outcome of the 

material volume (mm3) is shown in Table1, along with the optimal result using Farr’s algorithm [9]. The 
best result comes from Generation3 with w=10, which saves 92.97% of material compared to the single 

bar of volume V0. Compared with the best result using Farr’s method, it saves 72.54% of material. 

 
Farr’s method  

Algorithm2 Presented in Section2.3 (with compliance constraint) 

w=10 w=12 w=14 w=16 w=18 w=20 

Generation1 58416.29 37813.20 34116.98 31876.18 30689.34 30220.54 30162.73 

Generation2 101522.72 19211.52 19236.81 19284.33 19546.39 20545.28 20777.01 

Generation3 137111.38 16040.38 16333.41 16416.05 16634.11 16788.74 17025.10 

Table 1: Material volume (mm3) results of Case I. 
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Figure 4: Case I: recursive process of subdividing a truss (w=10 at the first generation) into a hierarchical truss. 

The red segments denote the instable compressive members that need to be further subdivided. 

3.3 Case II 

The second case considers the bridge structure of dimension 10 m × 1.25 m × 1 m shown in Figure 5(a). 

The vertical load of 80000 N is evenly distributed over 14 nodes, where each load vector is (0, 0, 

−5714.29 N). The compliance bound of the bridge is 1000 N·m.  

In the first scenario, the positions of supported and loaded nodes are fixed; other nodes are allowed to 
move within a locally centered cube of side length r. We set r = 0.6m to avoid singularity (the 

coincidence of nodal coordinates). Figure 5(b) shows the structure derived from modelβ; Figure 5(c) 

shows the structure by modelα. 

The second scenario allows the loaded nodes to move in the xy-plane, and the supported nodes can slide 
along the y-axis. The distance of their movement is limited to less than r. Figure 5(d) and (e) shows the 

optimal solutions by modelβ and modelα, respectively. 

 

Figure 5: Case II: the first hierarchy of the bridge problem. (a) initial topology, boundary conditions, and loads; 

(b)-(e) side, top and 3D views of the optimal designs under different configurations. The red segments denote the 

instable compressive bars that need to be subdivide. 



Proceedings of the IASS Symposium 2024 

Redefining the Art of Structural Design 
 

 

 7 

 

Figure 6(a) depicts the optimal design by subdividing the structure in Figure 5(b) that contains 25 

instable bars to be further subdivided. Because of the symmetry, only 10 out of 25 members are 

numbered in Figure 6(a). The data is shown in Table2, where “Stable Bar Volume” means the material 
volume needed for a thicker solid bar to resist Euler’s buckling under the same load of the instable bar; 

“Truss Volume” means the material volume of the optimal hierarchical truss replacing the instable bar. 

The total material volume of the structure in Figure 6(a) equals to 0.00855m3, saving 59.25% material 

compared with the volume of 0.02098 m3 of the structure in Figure 5(c). 

 

Figure 6: Case II: (a) the optimal design by subdividing the structure in Figure 5(b); (b) the optimal design by 

subdividing the structure in Figure 5(d). 

Number Length 

(mm) 

Internal 

Force (N) 

Stiffness 

(N/mm) 

Instable Bar 

Volume(mm3) 

Stable Bar 

Volume(mm3) 

Truss 

Volume(mm3) 

1 1250.0 106.7 108.8 1546.7 54925.6 5227.2 

2 1250.0 333.2 261.5 3715.1 97035.6 10014.6 

3 1250.0 3684.6 2697.6 38319.1 322682.0 44230.8 

4 1250.0 2514.6 1842.9 26178.6 266576.1 34002.4 

5 1250.0 1982.7 1452.5 20632.8 236706.3 29437.6 

6 1250.0 1979.5 1449.6 20591.5 236514.3 27311.0 

7 1729.2 35680.1 18883.6 513312.1 1921590.5 604067.2 

8 999.5 60284.1 55197.7 501300.2 834506.2 522114.2 

9 1205.9 58467.5 44370.3 586611.0 1196370.7 623196.4 

10 1678.3 62712.1 34197.1 875645.7 2399751.1 977904.2 

Table 2: Case II: numerical data of truss members of the truss shown in Figure 6(a). 

Figure 6(b) shows the optimal hierarchical structure by subdividing the structure in Figure 5(d). The 

material volume is 0.00601m3, reducing 62.01% material use compared with the volume of 0.01582m3 

of the structure in Figure 5(e). The data of each truss member are presented in Table3. 

Number Length 

(mm) 

Internal 

Force (N) 

Stiffness 

(N/mm) 

Instable Bar 

Volume(mm3) 

Stable Bar 

Volume(mm3) 

Truss 

Volume(mm3) 

1 650.1 46.9 169.0 649.3 9850.8 1646.0 

2 650.1 103.5 169.0 649.3 14625.0 2089.2 

3 1334.5 75.2 108.9 1763.3 52537.8 6012.3 

4 1334.5 111.9 108.9 1763.3 64078.4 6910.1 

5 50.0 284.6 3637.8 82.7 143.5 96.2 

6 984.6 2265.8 1690.9 14901.5 156987.1 22672.4 

7 1259.04 2155.3 1257.1 18115.1 250373.3 29317.0 

8 1390.9 2295.4 1211.6 21309.9 315365.7 40382.1 

9 2174.9 127.3 532.9 22915.0 181553.2 24379.5 

10 856.8 30903.0 26539.5 177123.7 439071.0 190074.4 

11 1439.9 55933.5 28520.9 537630.2 1668430.1 623696.7 

12 1324.2 51341.6 28468.5 453800.5 1351723.2 535044.5 

13 1853.4 51514.3 20407.9 637300.3 2652531.1 748985.3 
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Table 3: Case II: numerical data of truss members of the truss shown in Figure 6(b). 

 

Figure 7: The No.7 hierarchical truss in Figure 6(a) is 3D-printed with ABS using SLA. 

The No.7 member in Figure 6(a), as a hierarchical truss, is chosen to be manufactured as a 1:1 scale 

mock-up. This truss has a dimension of 1729.2 mm × 72.2 mm × 72.2 mm, containing 10866 bars. The 

compressive load along the axis of the member is 35680.1N; the compliance bound is 67.42 N·m; total 

volume of the structure is 604067.2 mm3. The minimal bar diameter equals 1 mm. 

Since its geometry is symmetric, half of the complex structure is fabricated using stereolithography 

(SLA) (Figure 7). The resolution of the 3D printing process is about 0.1 mm. Acrylonitrile Butadiene 

Styrene (ABS) plastic instead of the intended titanium alloy TC4 was used to reduce experimental cost. 

The mechanical tests will be conducted with the mock-up of titanium alloy in the future work. Due to 
the limited printing range of 3D metal printers, a more practical method in real world construction is to 

print smaller trusses at lower scale and assemble them by welding to form the upper scale truss. 

4 Discussion 

4.1 Limitation of the Subdivision Process 

The results in Section 3 show that the recursive algorithm is more material efficient than conventional 

design. However, these numerical experiments have limitations. 

Firstly, one particular prototype of topology (Farr’s prototype [9]) is employed to replace the instable 

bars. The topology optimization enumerates different parameters specifying the topology. Our resultant 

structures are more efficient than Farr’s original ones by introducing geometric optimization within each 
hierarchy. The proposed recursive algorithm is not limited to any particular prototype, however, a 

systematic construction of ideal topology for subdivision is still very much a work in progress. A more 

general approach would be using the ground structure method [25] instead of choosing a specific 

topology. But it requires a large amount of computing resources. 

Secondly, the global buckling of truss structures is a nonlinear and complex process. While the 

prebuckling model [16] employed in this paper assumes (i) a linear relationship between the 

displacements and the applied loads, (ii) these displacements are orthogonal to the vector of 
displacements associated with global stability, and (iii) the axial forces in the bars remain constant during 

the deformation induced by the instability. Thus, such model is valid until the structure reaches near 

buckling status. 

4.2 Toward Metamaterials with Additive Manufacturing 

It is economical to assemble large structure with small prefabricated components in traditional 
hierarchical trusses. Employing structural hierarchy also reduces material use when maintaining 

structural stability. However, the modular members from industrial process substantially limits the 
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configuration space of hierarchical structures. While 3D printing naturally offers a vast design space of 

multiscale complex geometry. Collision between physical bars also becomes less of an issue due to the 

nature of additive manufacturing.  

The recursive construction of hierarchical truss does not make much sense without sophisticated 3D 

metal printers. It is highly possible to unify high resolution printers (e.g., DMP70 of 3D MicroPrint has 

a resolution of 30 µm) and large-scale printers (e.g., BLT-S1500 with a 1.5 m×1.5 m×1.2 m build volume) 

in the next decade. At building scale, conventional welding or bolted connection can joint metal parts 
into larger structures. Thus, the boundary between material research and structural design is blurred. The 

hierarchical truss structures could be a promising prototype of the metamaterials for axial compression. 

4.3 Future Works 

Utilizing 3D-printed components, large-scale hierarchical trusses could find various applications in civil 

engineering in the near future. For practical applications, there still remain research works to be done: 
(1) The uncertainty in load condition needs to be considered. Only the instable compressed bars will be 

subdivided into trusses at lower scale in the present algorithm, however, some tension bars may be 

compressed and not stable under another load condition. Therefore, multiple load cases should be 
introduced to improve robustness of the hierarchical truss. 

(2) The resultant structures of the proposed algorithm should be compared with conventional solutions 

(e.g., using hollow beams, I-beams, or H-beams) to buckling problems. 

(3) Mechanical tests should be conducted to verify the optimal solutions from numerical experiments.  

5 Conclusions 

A recursive subdivision process is proposed to construct hierarchical truss using two optimization 

models. From a multiscale perspective, the classic Euler buckling formula relying on the second moment 

of area is not always applicable at local scale, e.g., thin-walled circular tubes may experience local 
buckling. Thus, our model replaces instable two-force bars with fusiform trusses by a recursive 

construction process. The local buckling behavior characterized by Euler’s critical load is transformed 

into the global buckling phenomenon associated with the positive semidefinite condition of the 

geometrical stiffness matrix.  

Based on numerical experiments, the proposed optimal hierarchical truss saves around 60% of the 

material compared with the truss directly implemented with solid bars. A member of the structure is 

fabricated through 3D-printing, partially reflecting the buildability of the fractal geometry. Today, 
structural design can benefit from the multiscale manufacturing technology with the increasing 

proliferation of large-scale high-resolution3D printers, which enable a continuum differentiation from 

microscale to building scale. Utilizing 3D-printed metal components, the hierarchical truss could be a 
promising prototype for large-scale structures. 
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