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Abstract

Membrane shells identify expressive architectural solutions for resistant but lightweight structures of
appealing aesthetic taste thanks to their ability to span wide areas with careful usage of material in
the absence of flexural and torsional internal actions. The design philosophy, seeking the shell shape
endowed with such moment-free quality, is known as form finding. To circumvent the indeterminacy of
the related boundary-value problem, the state of stress is conventionally prescribed by assigning the Airy
potential function so that the resulting shell form can be statically computed. Despite their practicality,
traditional algorithms subtly restrict form finding to shells with rather simple planar configurations,
whereby a feasible potential field is susceptible of an analytical description. In any case, auxiliary
functional requirements cannot be properly accounted for during the process. In this study, we present
a two-step numerical form-finding strategy suited to assist the designer in the selection of a proper
potential field satisfying standard static and user-defined functional constraints. Use of isogeometric
analysis ensures high-precision modelling of the form-found geometry, making the approach adapt to
shells of complex planar forms. Two examples show the effectiveness of the procedure, where the
influence of kinematic boundary conditions on the form-found geometry is also highlighted.

Keywords: form finding, isogeometric analysis, membrane shells, concrete spatial structures, Pucher’s theory,
Airy stress function, single-objective optimization.

1. Introduction
Membrane shells are favored in contemporary civil engineering owing to a bearing capacity relying on
a system of purely in-plane internal actions. The intrinsic absence of flexural and torsional moments
identifies this kind of structures as a convenient architectural solution to span wide areas with careful
usage of material without resorting to obstructive supporting pillars. The design philosophy, seeking the
shell shapes endowed with such moment-free property, is termed form finding [1].
To tackle the indeterminacy of the related boundary-value problem, the majority of existing form-finding
algorithms assign the stress field as an input in the form of a suitable Airy stress function, then solve for
the corresponding shell equilibrium configuration. In spite of its undoubted practicality, this approach
subtly limits the process to relatively simple shell forms. For instance, the prescription of a feasible
Airy stress function, complying with static boundary conditions in force, is not trivial when shells with
intricate planar footprints are addressed [2, 3]. Moreover, the manual adjustment of the user-prescribed
potential field tends to be generally far from intuitive in the presence of auxiliary functional requirements
setting the shell height or curvature in specific regions of the membrane, due to its abstract nature [4].
In this paper, a numerical form-finding strategy, based on isogeometric analysis (IgA) [5], is presented
to determine the configuration of shells, made of a unilateral material, having a specified planar foot-
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print. With predefined external loads, the procedure first delivers an optimized Airy stress function as a
solution of a nonlinear programming routine aimed at minimizing the thrusts conveyed to the supports
of the structure while ensuring no-traction working stresses under relevant static boundary conditions.
The corresponding shell form is subsequently obtained compatibly with imposed kinematic constraints.
In contrast to the manual prescription of the Airy stress function, the proposed strategy results to be a
versatile tool to assist the designer in determining a locally optimal geometry accounting for usual static
as well as user-defined functional constraints.
The paper is organized as follows. Section 2 briefly introduces the reader to the mathematical formu-
lation of the membrane shell boundary-value problem. The isogeometric discretization model and the
proposed optimization routine are in turn detailed in Section 3 and Section 4. Results are then discussed
in Section 5. Eventually, conclusions are drawn in Section 6.

2. The membrane shell boundary-value problem
Among various membrane formulations available in the literature [6], Pucher’s theory [7] can be re-
garded as the most adapt to deal with form-finding problems given its applicability to funicular shells
of general shape. Within that model, the equilibrium of a shell infinitesimal element, acted upon by
distributed loads and internal actions, is governed by the following equation:

∇2Φ∇2f −∇(∇Φ) · ∇(∇f) = (qh · ∇f) + h · (∇ ◦∇f)− qz (1)

where ∇2 is the Laplacian operator, ∇ = [∂/∂x, ∂/∂y]T , h = [
∫
qx dx,

∫
qy dy]

T , q = [qx, qy, qz] ≡
[qh, qz] the external force per unit projected area, f the height of the shell mid-surface S, and Φ the Airy
stress function associated with the projected membrane stress components, i.e.:

Nx = Φ,yy −
∫

qx dx Ny = Φ,xx −
∫

qy dy Nxy = −Φ,xy (2)

Complemented with relevant boundary conditions, Eq.(1) encloses the strong form of the membrane
shell boundary-value problem.
Let F = {f(x, y)|f(x, y) = f̄(x, y) ∀(x, y) ∈ Γc} be the functional space where to seek the shape
of S fulfilling geometric boundary conditions on the shell restrained boundary Γc. Again, be G =

{g(x, y)|g(x, y) = 0 ∀(x, y) ∈ Γc} the set of arbitrary weight functions of f vanishing on Γc. Applying
the chain rule on the terms involving the second derivatives of f and eliminating similar addends, Eq.(1),
pre-multiplied by g on both sides, can be written as:

div{∇2Φ∇f −∇fT∇(∇Φ)− h ◦ ∇f}g + [∇fT∇(∇Φ)] · ∇g−
+∇2Φ(∇f · ∇g) + (h ◦ ∇f) · ∇g = −qzg ∀g ∈ G (3)

Integration of Eq.(3) over the shell projected domain Ω, combined with the divergence theorem, eventu-
ally delivers the weak form of the problem at hand:∫

Ω

[
∇2Φ(∇f · ∇g)− [∇fT∇(∇Φ)] · ∇g − (h ◦ ∇f) · ∇g

]
dΩ =∫

Γf

g

[
∇2Φ∇f −∇fT∇(∇Φ)− (h ◦ ∇f)

]
· n̂ ds+

∫
Ω
qzg dΩ ∀g ∈ G (4)

having denoted with Γf the free boundary of the shell and n̂ its normal unit vector.
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3. The isogeometric computational model
An exact solution to the weak form can be sought only in exceptionally simple cases. In this study, the
isogeometric computational model is employed to approximately find the shell mid-surface elevation
f(x, y) as a solution of a linear algebraic system, obtained upon discretization of Eq.(4). Ergo, the shell
domain Ω is modelled by N e elements of a single B-Spline surface patch, confined within pairs of knot
spans along the parametric directions ξ and η, i.e. Ωe = [ξi, ξi+1]× [ηj , ηj+1]. Thus:

Ne∑
e=1

∫
Ωe

∇2Φe(∇ fe · ∇ ge)− [(∇ fe)T∇(∇Φe)] · ∇ ge

− (he ◦ ∇ fe) · ∇ ge dΩe =

Ne∑
e=1

∫
Ωe

qezg
e dΩe (5)

Note that the integral on Γf has been left out in the above expression because null as long as the pre-
scribed stress field complies with the static conditions (13) imposed on the shell free frontier.
Within the IgA framework, the distribution of the relevant fields f , g and Φ within an element is evalu-
ated as a linear combination of ne

cp values at control points via the corresponding B-Spline basis func-
tions. Thus,

fe(ξ, η) = Se
kZ

e
k ⇔ fe(ξ, η) =

[
R1(ξ, η)...Rne

cp
(ξ, η)

] [
f1...fne

cp

]T
fe
,j(ξ, η) = Be

jkZ
e
k ⇔

[
f,x(ξ, η)

f,y(ξ, η)

]
=

[
R1,x(ξ, η)...Rne

cp,x(ξ, η)

R1,y(ξ, η)...Rne
cp,y(ξ, η)

] [
f1...fne

cp

]T
The approximation scheme for g and Φ holds in a similar fashion when the corresponding vectors of the
field values at control points are denoted as We and Ae, respectively.
Likewise, ∇(∇Φe) is computed via a three-dimensional tensor, containing the second-order derivatives
of the basis functions, times a vector of Φ-values at control points: Φe

,ij(ξ, η) = Ce
ijm(ξ, η)Ae

m, where
i, j = {x, y} and m = 1, .., ne

cp. Therefore:

∇2Φ(ξ, η) = Le
p(ξ, η) P

e
p =

= [C111(ξ, η) ... C11ne
cp
(ξ, η)|C221(ξ, η) ... C22ne

cp
(ξ, η)][Φ1 ... Φne

cp
|Φ1 ... Φne

cp
]T

By virtue of the above discretization scheme, Eq.(5) becomes:

Ne∑
e=1

[ ∫
Ωe

(Le ·Pe)(BeTBe)− BeT (CeAe)Be − BeT (he ◦ Be)dΩe

]
Ze ·We =

=

Ne∑
e=1

[ ∫
Ωe

qezS
edΩe

]
·We (6)

For clarity of reading, scalars, vectors, 2nd- and 3rd-order tensors have been denoted as italic, bold,
calligraphic bold and blackboard bold font styles, respectively.
Because a B-Spline patch corresponds to a parallelepiped in the parameter space, Gauss-Legendre
quadrature is a natural candidate for numerical integrations in Eq.(6). Distinctly from the conventional
finite-element method, an additional mapping from the physical to the parametric domain is required
during the integration process: ϕ̂ : Ωe → Ω̂e. Isogeometric elements are then mapped to a regularly
shaped bi-unit reference one: ϕ̃ : Ω̂e → Ω̃e.
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The inverse mapping ϕ̃−1 to an element Ω̂e = [ξi, ξi+1]⊗ [ηj , ηj+1] is regulated by:

ξ =
1

2
[(ξi+1 − ξi)ξ̃ + (ξi+1 + ξi)] η =

1

2
[(ηj+1 − ηj)η̃ + (ηj+1 + ηj)]

where ξ̃ and η̃ denote the coordinates of Gaussian points in the reference element.
Thus, a generic integrand f(x, y) can be numerically integrated over an element according to:∫

Ωe

f(x, y) dΩe =

ngp∑
q=1

f(ξ̃q, η̃q)wgpq
|Jϕ̂||Jϕ̃|

where ngp and wgpq
are the number of Gaussian points and associated weights while the Jacobian ma-

trices associated with the two mappings are defined as:

Jϕ̂ =

[
∂x
∂ξ̂

∂x
∂η̂

∂y

∂ξ̂

∂y
∂η̂

]
Jϕ̃ =

∂ξ̂

∂ξ̃

∂η̂

∂η̃

Through element assemblage, Eq.(6) can be arranged into a customary global format:

(KZ) ·W = Q ·W (7)

where K takes the meaning of shell stiffness matrix.
Given the arbitrariness of W, Eq.(7) further simplifies to:

KZ = F+Q (8)

being F the vector of control point residuals, which are nonzero only at constrained control points,
thereby equal to the reactions exerted by the supports.
To solve the above algebraic system for the unknown components of Z and F, it is recommended to
separate both vectors Z and Q into two sub-vectors pertaining to the degrees of freedom where the shell
height is prescribed [resp., unknown] (subscript P ) [resp., (subscript U )]. Thus:[

KPP KPU

KUP KUU

] [
ZP

ZU

]
=

[
FP

FU

]
+

[
QP

QU

]
(9)

Accounting for the imposed position of restrained control points, the form-found geometry can be even-
tually constructed by computing the elevation of free control points according to:

ZU = K−1
UU [FU +QU −KUPZP ] (10)

Then, the reaction forces exerted by the supports at restrained control points result from:

FP = KPPZP +KPUZU −QP (11)

4. Optimization of the Airy stress function
Use of Eqs. (10)-(11) requires that a feasible Airy stress function is first provided in order to compute the
components of K. In this section, a nonlinear programming routine is set up to automatically determine
an optimized potential field taking into account static as well as functional constraints. Within the
application purposes of the present study, the shell structure is assumed to be made of a unilateral
material incapable of resisting tensile stresses. Accordingly, without any loss of generality, the proposed
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optimization procedure is finalized to minimize the thrusts conveyed to the supports of the structure, a
condition intended thereby as a functional requirement herein.
Hence, denoting by N the projected membrane stress tensor, the no-traction assumption requires N to
be negative semi-definite throughout the shell domain, i.e. (N v̂)v̂ ≤ 0,∀v̂ ∈ Ω, that is:

trN = Nx +Ny = (Φ,yy − hx) + (Φ,xx − hy) ≤ 0

detN = NxNy −N2
xy = (Φ,yy − hx)(Φ,xx − hy)− Φ2

,xy ≥ 0
(12)

Fulfillment of the static condition of null membrane stresses at control points, located on any free edge
of the shell, is also demanded:

N n̂ = 0 on Γf →

{
(Φ,yy − hx)n̂x − Φ,xyn̂y = 0

Φ,yxn̂x − (Φ,xx − hy)n̂y = 0
(13)

Being
T = |(N n̂)n̂| = |(Φ,yy − hx)n̂

2
x − 2Φ,xyn̂xn̂y + (Φ,xx − hy)n̂

2
y|

the magnitude of the thrust conveyed to the support at the generic control point of the constrained
boundary Γc, a suitable Φ field is sought via the MatLab© optimization routine fmincon by minimizing
the objective function:

obj = |Tmax − Tthreshold| (14)

subject to the nonlinear constraints in Eqs. (12)-(13). Convergence of the proposed numerical procedure
ensures that the corresponding distribution of membrane stresses is such that reaction forces, acting on
the supports of the structure, are within the user-defined upper limit value Tthreshold.
A scheme of the workflow involved by the present form-finding procedure is available in Fig. 1, where
its step-wise arrangement is also highlighted.

Figure 1: Schematic of present form-finding procedure.
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5. Results
Two cases of fully compressed shells are illustrated in this section. As detailed in Fig. 1, the procedure
starts from a flat surface having a planar footprint coincident with the target one. In both cases, the
planar domain is a 4-meter-long square supported in cornered regions. Different extensions of the con-
strained bases are investigated to highlight their influence on the final geometry. In both examples, the
initial geometry is discretised by 64 bicubic B-Spline elements and 225 control points having support
on non-uniform open knot vectors Ξ = H = [0, 0, 0, 0, 0.12, 0.12, 0.12, 0.15, 0.28, 0.50, 0.72, 0.84,
0.87, 0.87, 0.87, 1, 1, 1, 1]. Because of the non-interpolatory nature of spline technology, this choice
allows to discretize the computational domain by equally-sized elements while imposing knots of triple
multiplicity at the inner sides of the restrained cornered regions, where the form-found shape has to
possess the heights specified by the kinematic boundary conditions. In both examples, the membrane is
acted upon by a uniform projected vertical load qz of 2 kN/m2, exemplifying its weight.

5.1. Shell supported at cornered regions on its frontier

The shell is supported at cornered regions on its frontier while all edges are free. According to Eqs.
(12)-(13), the Φ-distribution must be sought among the concave functions having no curvature variations
along each edge of the shell. A parabolic velaroidal surface was then tentatively prescribed as an initial
guess:

Φguess(x, y) = −1100

(
x2

a2
+

y2

b2
− x2y2

a2b2

)
[Nm] ∀(x, y) ∈ Ω

where a and b are half-spans in the direction of the respective coordinate axes x and y while the multi-
plication factor of the term in brackets is the rise of the surface at its center.
On account of the non-convex format of the optimization problem, numerical convergence was attained
by means of the robust Sequential Quadratic Programming (SQP) algorithm with Tthreshold = 2.47 kN
and relative constraint and step tolerances equal to 1E − 06 and 1E − 10, in turn. The optimized Airy
stress function and corresponding principal projected membrane stresses are visualized in Fig. 2. The
distribution of right stress eigenvectors is also reported in the same figure, where the absence of stresses
across all free edges can be noticed according to Eq. (13). There, blue and red colours have been used to
denote the directions associated with principal membrane stress resultants N1 and N2, in turn. Eventu-
ally, an isometry of the form-found geometry is depicted in the same figure, where the compliance with
the geometric boundary conditions on the supported cornered regions can be also pointed out.

5.2. Shell supported at cornered regions of squared extension

In this second example, the extension of the cornered supports is enlarged to cover regions of squared
footprint while leaving all edges free. Being the planar domain unchanged compared to the previous
case, the optimization routine was again initiated again via a velaroidal guess:

Φguess(x, y) = −2300

(
x2

a2
+

y2

b2
− x2y2

a2b2

)
[Nm] ∀(x, y) ∈ Ω

where a higher multiplication factor was adopted to achieve shell elevations not larger than 4 metres.
Fig. 3 displays the corresponding no-tensile locally optimal solution obtained for this case study. The
settings used for the termination of the optimization routine are: Tthreshold = 3.91 kN, relative constraint
tolerance = 1E − 06, relative step tolerance = 1E − 10. As in the previous case, the final distribution of
the Airy stress function deviates considerably from the initial guess at the corners, where the alteration
produced by the optimization solver in containing the magnitude of the edge constraint reactions can be
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Figure 2: Optimized Airy stress function Φ (top left), projected principal membrane stress resultants
(top right and middle left), right stress eigenvectors (middle right) and isometric view of form-found
shell (bottom). Control points are denoted by white dots while element boundaries are depicted as black
solid lines.
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Figure 3: Airy stress function Φ (top left), projected principal membrane stress resultants (top right and
middle left), right stress eigenvectors (middle right) and isometric view of form-found shell (bottom).
Control points are denoted by white dots while element boundaries are depicted as black solid lines.
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observed. It is remarked that the planar extension of the supports results to have a significant influence on
the outcome of the overall procedure. In particular, a comparable sensitivity of the form-found geometry
is evident on shell edges relative to the previous case.

6. Conclusions
A form-finding strategy, based on Pucher’s theory, has been presented. The procedure determines the
form of a shell of given planar footprint so as to balance applied loads in a state of purely in-plane
stresses. Use of isogeometric analysis, as a numerical solving approach for the physical problem at
hand, makes the algorithm applicable to shells of general free-form boundaries. In contrast with the
standard analytical prescription of the Airy stress function, the integration of the proposed automatic
optimization routine into the present form-finding procedure results to be a viable approach to guide the
designer towards more functional architectural solutions.
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