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Abstract

Designing grid shells requires finding a happy medium between aesthetics and engineering quality:
architects and structural engineers join efforts to define geometries and grid topologies that achieve
structural efficiency. In sculptural architecture, the artistic intent prevails, and produces freeform shapes
with possibly large openings to create spectacular effects. This calls for shape optimization methods to
mitigate inefficiency caused by bending forces. However, if modifications are not bounded, optimization
may either alter the surface aesthetics or violate design constraints. This paper implements a shape
optimization method that improves the performance of triangular grid shells while ensuring small shape
changes. A graph neural network learns to update the nodal coordinates of the grid shell and reduce both
strain-energy, as a measure of structural efficiency, and the total weight of the structure, as a measure
of sustainability. Our case studies include regular shapes among the baseline structures of the FreeGrid
benchmark, as well as non-conventional geometries.

Keywords: FreeGrid benchmark, conceptual design, form finding, shape optimization, deep learning, gridshell,
sustainability, steel structures, automatic differentiation

1. Introduction
Shells and grid shells are subject to unique contextual, functional, constructional, and aesthetic con-
straints, with the correlation between geometric shape and structural parameters varying on a case-by-
case basis. In architectural practice, free-form configurations are customary, as they open up to many
different creative design possibilities. However, free-form grid shells often exhibit complex structural
behavior, whereas the desiderata would be predominant membrane characteristics, low bending forces,
and robustness [1]. In the ideal case, the optimal form emerges naturally by applying loading and
boundary conditions in form-finding methodologies [2, 3], whereas in the general case, the shape is not
naturally efficient and requires several design checks and improvements based on heuristics, experience
insights, or automated optimization methods. Objective functions typically include structural parame-
ters, which are iteratively adjusted by editing design variables within predefined bounds [4].

If the target shape is fixed, the structural response of the final structure can be improved via grid design
[5], topology optimization [6], cross section refinement [7, 8], and reinforcement [9, 10]. Conversely,
shape optimization offers a set of methods and tools for maximizing the performance of a structure
modifying the input shape.

Copyright ©2024 by Andrea FAVILLI, Francesco LACCONE, Paolo CIGNONI, Luigi MALOMO, Daniela
GIORGI.
Published in the Proceedings of the IASS Annual Symposium 2024 with permission.



Proceedings of the IASS Annual Symposium 2024
Redefining the Art of Structural Design

The literature offers a large variety of shape optimization methods, differing in the types of variables, ob-
jective functions, optimization methods, etc. In [11], the variables are finite element mesh nodes, which
are updated through deformation gradient. The solution is improved through surface regularization and
distortion control. The authors of [12] employ a NURBS surface formulation, using control points and
thickness as variables. The shape modifications result from finite element analysis and gradient eval-
uations, performed using Automatic Differentiation (AD). In [13], structural stiffness is maximized in
a grid shell by iteratively updating nodal coordinates according to sensitivity information. Since the
procedure is initialized with a displacement perturbation, which can lead to a jagged surface, a filtering
scheme is adopted to normalize the non-smooth gradient fields. Other shape optimization methods are
formulated as multi-criteria optimization. In [14], curves and surfaces can have discontinuities in tan-
gent vectors and curvatures (creases). A multi-objective optimization problem is solved by the constraint
approach to generate a trade-off design between smoothness and mechanical compliance.

In this paper, we propose an alternative implementation of the method in [15], which uses geometric
deep learning to modify a grid shell shape. In the original work, a graph neural network is fed with
geometric features of the grid shell and performs structural analysis at each learning step; the variables
are the node coordinates, and the output is a node displacement field that improves the input shape. In
this paper, the graph-neural-network model in [15] is expanded to solve a multi-target task. The original
model is driven only by the static analysis of grid shells to solve both form finding and shape optimization
problems. In the presented method we introduce an additional term in the objective function (i.e., the
loss) that encourages the reduction of global beam length. This augmentation aligns with sustainable
principles of saving material, according to the FreeGrid benchmark.

The test dataset is composed of two regular shapes from the FreeGrid benchmark [16, 17], a parabolic
dome and a hyperbolic paraboloid with different meshing, and three non conventional free-form shapes.
In Section 2. we introduce the formulation of the updated problem and the learning model. The results
are presented in Section 3. and discussed in Section 4..

2. Geometric Deep Learning for Shape Optimization
The input grid shell is represented as triangular mesh M = (V, E ,F), in which V are the vertices,
identified with the structural nodes; E are the edges, identified with the beams; and F are the mesh faces.
In the following, the term displacement will denote the shape optimization outcome, while deformation
is intended as the byproduct of loads.

The learning-based shape optimization acts on the vertices by imposing translations, i.e., displacement,
while keeping the same number of beams and node connectivity. In other words, the neural network
model predicts an optimal translation vector δv ∈ R3 for each vertex v ∈ V , so that the original mesh
topology is retained. The degrees of freedom that are fixed due to external constraints are not affected.
Thus, null displacements and rotations are applied on a given subset of constrained vertices V ⊆ V .

The neural network model takes as input an augmented encoding of the original structure. Different
pieces of information are combined into an input feature vector xv ∈ R12, for each vertex v ∈ V .
The vector includes as features: vertex coordinates, vertex normals, principal curvatures of the under-
lying freeform surface, and four distance and centrality measures of vertices with respect to the shape
boundary ∂V . Then, three modules arranged in a deep sequence of layers produce intermediate feature
transformations until the final layer yields the prediction δv (Figure 1). A critical network module is
made of Graph Attention Layers, which work on nearest-neighbor graphs in feature spaces: at each
layer, the vertex features are updated as weighted averages of neighboring features in the graph [15].

The network weights are determined by minimizing the loss, which is the target objective function based
on the strain energy and on the total amount of steel used. The loss minimization follows a gradient
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Figure 1: The adoped learning model is made of three modules: Encoding Maps, Graph Attention
Layers, and a Readout Function. The feature vector xv is encoded in xencv : three Encoding Maps expand
each semantic cluster of the feature vector (coordinates, curvatures, and geodesic measures) to 256
components in the range [−1, 1]. xencv is subsequently fed to four Graph Attention layers (GNN) to get
a deep vector x̃v after layer output concatenation. Finally, a multilayer perceptron plays the role of the
Readout Map to produce vertex displacements δv from the deep vectors.

descent method: starting from randomly initialized network weights, the weights are moved along the
direction of maximum loss decrease (i.e., the opposite of the gradient) in an iterative procedure. At each
step, the decrease direction vector is scaled by the learning rate parameter.

The loss to be minimized is the sum of three terms:

L(M) = L∗ + ζB + ηS (1)

The main loss component concerns the structural performance and exploits a simplified linear static anal-
ysis of the grid shell adopting a two-node Euler-Bernoulli beam formulation with linearly-interpolated
endpoints force values only. This formulation enables simplified and rapid computations with reason-
able accuracy for a grid shell that is uniquely loaded at the vertices. The loss function L∗ is defined as
the mean strain energy over all beams:

L∗ =
1

|E|
∑
e∈E

Ee (2)

where Ee is the strain energy of the beam e. To avoid distortions on the boundary fairness, the boundary
constraints are solved in a soft weighted fashion imposing:

B =
1

|∂V |

∑
v∈V

||δv|| (3)

where B is a penalty term ensuring that the displacement for the fixed degrees of freedom remain small
during the training, up to the final iteration, in which they are forced to zero. The weight ζ sets the
penalty at a fixed percentage of the structural loss L∗

0 at the first step 0, which is set at 30% in the current
implementation.

The third term of the loss S is inspired by the FreeGrid benchmark [16, 17], and accounts for the
sustainability. In FreeGrid, the goal is to obtain more sustainable solutions by reducing the steel weight.
In particular, the loss term considers the length of the beams, the steel grade and cross section type.
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Figure 2: Assembly of the stiffness matrix starting from a 3D array. For each beam, the local stiffness
matrix is transformed in the global reference system, then the four 6x6 blocks, corresponding to the
6 degrees of freedom at the 2 beam endpoints, are arranged in a 6|V |x6|V | matrix according to the
endpoints’ indices. Lastly, the global stiffness matrix is assembled as the sum of all beam matrices
along the beam dimension.

Neglecting the terms that are constant during learning, the sustainability term reads as:

S =
∑
e∈E

le = Ltot (4)

where le is the length of a single beam e. This term is weighted by a factor η, namely a fixed percentage
of the structural loss L∗

0 at step 0. We set η to 100% in the current implementation, since the structural
and sustainability partial metrics in FreeGrid equally contribute in the bulk performance metric.

One of the main novelties of the approach is the introduction of a differentiable Euler-Bernoulli linear
static approach that integrates with learning models. The loss function in Eq. (1) can be made dif-
ferentiable with respect to vertex coordinates, so that it can be used to determine the neural network
weights through gradient descent. The method relies on Automatic Differentiation (AD) to get punctual
evaluations of gradients, thus avoiding the need to express analytically the partial derivatives of L. For
computational efficiency on GPUs, the assembly of the stiffness matrix is vectorized, as shown in Fig.
2. Sparse matrices, which gather the individual beam stiffness matrices, are assembled node-wise in
parallel. Subsequently, the non-zero values are summed all at once.

This shape optimization task is framed as single-instance learning. For each input mesh, the network
weights are reset and a new loss minimization procedure is started. Apart from the mesh, the input
parameters are the beam characteristics, the external load, and the learning rate. Formally, the task
consists of finding an optimal mesh M∗ = Tθ∗(M) such that:

θ∗ ∈ argminθ L(Tθ(M)) (5)
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where the neural model Tθ is a function of the weights θ.

A scale-dependent stopping criterion is adopted for the iterative procedure, which is based on both
absolute and relative loss variation. The relative component is satisfied when the difference between the
maximum and the minimum loss is 0.1 · L0, where L0 is the initial loss. The absolute component is
satisfied when the loss variation in the last 50 iterations is less than 0.005. An alternative version has
been proposed in [18] implementing a graphical user interface that allows the user to enter the execution
flow. The user can change the optimization parameters on the fly and visualize the shape modification
from different perspectives. Moreover, the user can replay or restart the procedure until he/she founds a
balance between performance metrics and amount of shape alteration.

3. Case studies and optimization setup
We evaluate the performance of the proposed method against the benchmark FreeGrid, which is meant
to test and compare different approaches to the design and optimization of steel gridshells [16, 17]. The
benchmark aims at improving three baseline design problems: a barrel vault, a parabolic dome, and a
hyperbolic paraboloid, having a free-edge and subjected to uniform and piecewise load conditions. The
improvement is measured in relative terms according to a holistic bulk metric, which considers structural
behavior, buildability, and sustainability. Specifically, the structural performance metric accounts for
both ultimate and serviceability behavior, by calculating the critical Load Factor and maximum vertical
displacement; the buildability performance metric evaluates face planarity, uniformity of structural joints
and members; the sustainability performance metric accounts for the carbon the structure embodies.
The benchmark admits all techniques for shape, topology and size modifications, as long as the design
domain fits some given constraints related to geometry, structure and material.

Fig. 3 and Fig. 4 show our five case studies. The first two cases are the FreeGrid parabolic dome
and hyperbolic paraboloid, after suitable triangular remeshing (Fig. 3). The free edge causes structural
inefficiency, therefore a shape optimization step is required. We analyse four different meshes for each
case study, obtained by bracing the quads of the starting baseline geometries, and performing isotropic
remeshing with different target average lengths. Tab. 1 reports the statistics for each mesh configuration,
with letter b labelling bracing and i-x isotropic remeshing with target length x, respectively. Consider
that grid shells with uniform cross section and same total beam (or edge) length are deemed comparable
(i.e., the b− and i−1.5).

In all cases the beams are made of common steel S355 with Young’s modulus E = 2.1e+ 5 MPa, Poisson’s
ratio ν = 0.3, yield strength fy = 355MPa, and density ρ = 7850kg/m3. The cross section are
tubes of 101.6mm diameter and 10mm thickness as in [17]. The present method for shape optimization
performs under SLS uniform loading of 1.2 kN/m2 and for the same boundary conditions adopted in
the benchmark, i.e. with hinged nodes on the boundary apart from the free edge.

Additionally, we test our method on other three unconventional geometries, shown in Fig. 4. The aim
is to showcase shape optimization in presence of more complex shape features, boundary status and
irregular structural behavior. The mesh statistics are reported in the last three rows of Tab. 1.

4. Results and discussion
The results are presented in Figs. 5-7, where two columns are reported for each case study: on the left, the
input shape mesh; on the right, the optimized model. Color maps represent the beam strain energy, the
deformations due to load (u), and the displacements (δ, i.e., increments for node coordinates). The last
column of Tab. 1 includes the sustainability performance after the optimization (Eq. 4). Remarkably, in
the present method the learning rate is the only parameter controlling the shape change at each iteration.
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(b) (i-1.5) (i-2.0) (i-2.5)
Figure 3: Case studies from the FreeGrid benchmark: (top) parabolic dome; (bottom) hyperbolic
paraboloid. Different meshings: (b) braced quad; (i-1.5) isotropic with target length 1.5m; (i-2.0)
isotropic, 2m; (i-2.5) isotropic, 2.5 m. Blue spheres indicate hinge supports.

Figure 4: Case studies from non conventional shapes. From left: 2Spheres, Botanic, Wave. Blue spheres
indicate hinge supports.

The learning rate controls convergence speed and closeness of the output geometry to the original shape.
We set the learning rate to 0.1 for the parabolic dome and to 0.01 for the hyperbolic paraboloid, and
keep it constant for the different meshing configurations, which have highly-variable stiffness, number
of nodes, and energy distribution.

For the parabolic dome (Fig. 5), deformation and strain energy localization are qualitatively uniform
across the different cases. Notably, the mesh (b) exhibits higher efficiency owing to its more rationale
beam allocation. The use of geometric features as input to the learning model ensures smoothness preser-
vation in the displaced shapes. Furthermore, all optimized solutions are characterized by the elevation
of the free edge, namely its vertices have a non-zero vertical component. As the number of beams de-
creases, the projected area of the grid shell contracts, resulting in a reduction of the cantilevered portion.
The stiffness augmentation, associated with a higher number of beams (given the cross section constant),
enhances the dome’s capacity to withstand openings, and reduces the need for significant modifications
to its shape. Conversely, in case (i-2.5), the impact of shape modifications on the cantilever part is more
pronounced. It is noteworthy the unique pattern observed in the case (b), characterized by radial lines
where mesh diagonal orientations switch, denoting discontinuities. These features are intentionally pre-
served by the learning model, and become sharp lines. With more iterations and higher learning rate, this
grid shell would fold along these lines. In all cases, the total length of beams increases due to the raised
elevation of nodes (last row in Fig. 5 and last column of Tab. 1). This shape modification is sustained
by the strain energy minimization (loss component L∗, Eq. 2) which hampers the sustainability (loss
component S, Eq. 4).
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Table 1: Mesh statistics of the various case studies employed: Name, Size (mxmxm), number of vertices
|V| (i.e., structural nodes), faces |F| (triangular panels), edges |E| (beams), average edge length avg(le)
in meters, total length of the edges Ltot =

∑
le in meters at the starting condition and Ltot,opt after the

optimization (see Sec. 4.).
Name Size Mesh type |V| |F| |E| avg(le) Ltot Ltot,opt

parabolic dome 30.00x30.00x3.75

(b) 349 640 988 1.73 1711.86 1726.22

(i-1.5) 399 737 1135 1.54 1744.88 1769.36

(i-2.0) 232 418 649 2.04 1324.27 1346.90

(i-2.5) 156 274 429 2.52 1082.09 1089.53

hyperbolic paraboloid 30.00x30.00x7.50

(b) 221 400 620 1.78 1105.19 1102.17

(i-1.5) 261 463 723 1.54 1113.57 1109.80

(i-2.0) 146 250 395 2.10 829.87 825.22

(i-2.5) 102 168 269 2.56 688.62 663.43

2Spheres 34.23x30.56x11.38 - 1373 2617 3989 1.04 4135.99 4148.81

Botanic 30.80x28.57x7.69 - 1121 2152 3272 0.97 3181.73 3259.04

Wave 28.26x49.03x9.91 - 1130 2110 3239 1.03 3325.53 3311.40

For the hyperbolic paraboloid (Fig. 6), unlike the previous scenario, the design space is constrained
since its anticlastic shape is more efficient. To enhance the stiffness of the cantilevered section along the
free edge and mitigate strain energy at the transition from fixed to free edge, the most viable approach
involves reducing the span of the cantilever. This approach is also driven by the sustainability term in
the loss (see the length reduction in the last column of Tab. 1). Considering also the lower number
of beams and nodes with respect to the dome cases, a smaller learning rate is adopted to avoid the
shape folding on the fixed part. Since the learning model and the static solver include and update the
dead load of the beams, comparing different configurations is not easy. Only the meshes (b) and (i-
1.5) are genuinely comparable for similar starting conditions, and hence the resulting stiffness and the
magnitude of the displacement is similar. Conversely, case (b) exhibits a folding tendency akin to the
dome case, prompting a rise in shape, particularly at the center. In isotropic cases (i), displacements
occur more smoothly and locally. The case (i-2.5) starts from a higher strain energy, so the learning rate
proportionally makes shape changes more intense, and displacements larger.

Concerning free-form shapes (Fig. 7), different learning rates are adopted: 0.8 for the shapes 2Spheres
and Botanic, 0.5 for Wave. The 2Spheres model results as a fusion of two hemispheres intersecting
at a crease line with an opening, causing stress concentration and deformable parts, respectively. The
displacement mobilize smoothly all nodes, aiming to maintain uniform curvature while transitioning
towards a funicular configuration. The Botanic model is a nearly funicular design. The displacements
tend to increase the curvature in the flatter areas and more uniformly distribute the energy among the
beams. The Wave model has a shape developing membrane behavior in the central part, with cantilever-
ing boundaries and large openings, where maximal deformations occur. Despite experiencing significant
displacement, reaching up to 3.78 m, the overall shape remains relatively unaltered, with the smooth-
ness and distinctive geometric features, such as peaks, valleys, and the shape of openings, preserved.
Moreover, this latter model shows an improvement in terms of sustainability (last column of Tab. 1).
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Figure 5: Results on the parabolic dome.

5. Conclusions and future perspectives
This contribution implements a geometric deep learning-based approach to shape optimization of grid
shells that targets the minimization of a loss summing the strain energy of the structure and the sustain-
ability impact of the steel beams used. The proposed method is deployed on common shapes charac-
terized by a free edge, as well as on freeform shapes. Results indicate good performance in achieving
multi-target objectives, effectively balancing the requirements for enhanced static efficiency and reduced
steel consumption. Notably, the method is able to preserve relevant input geometric attributes, such as
meshing and curvature, which is advantageous in freeform applications. The inherent flexibility of the
core methodology suggests several future research lines, including expanding the loss formulation to en-
compass additional metrics, such as those related to buildability, in addition to statics and sustainability.
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Figure 6: Results on the hyperbolic paraboloid.
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