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Abstract 

Connection nodes are usually the costliest elements of gridshells because of their geometrical 

complexity. Their fabrication might be significantly simplified if they have no geometrical torsion. 

Architectural geometry literature has therefore focused on developing geometrical structures with null 

torsion, such as conical and circular meshes, and on associated generation methods. These meshes are 

closely linked with principal curvature and therefore give limited freedom to the designer. This paper 

investigates an alternative approach based on the theory of parallel transformation to define a torsion 

free layout on any planar quadrilateral mesh. An exact construction method of the corresponding linear 

space is presented as well as an approximate method using the Kangaroo solver. It proposes then a 

strategy to build nodal axes so that they fit with surface normals. This strategy is evaluated from a 

geometrical and mechanical point of view through different mesh examples. Their performances are 

compared with a trivial technical solution with geometrical torsion at nodes where beam mid-planes are 

chosen perpendicular to the surface. Finally, the authors conclude on the influence of such design 

choices made on geometrical criteria for the beam layout on the global mechanical behaviour of 

gridshells. 

Keywords: Architectural Geometry, Planar Quad meshes, Torsion free nodes, gridshell, Structural Analysis  

1. Introduction 

Gridshells are popular structures, as they allow to elegantly cover relatively wide spans with limited 

weight while ensuring transparency. Their geometry usually has double-curvature, which gives them 

shape resistance. However, they are often built with straight beams and flat panels to reduce costs. 

Because of panel planarity, the Gaussian curvature of the envelope is located only at connection nodes 

between members: nodes concentrate the geometrical complexity of the structure and are therefore the 

most complex element to manufacture. However, their fabrication might be significantly simplified if 

they are torsion-free, i.e. if the beam mid-planes meet on a common axis (cf. figure 1). 

A common constraint on the node axes is their approximate orthogonality to the surface. This is due to 

the fact that, for fabrication and structural purposes, it is desirable that beam top faces are approximately 

parallel to the surface. Otherwise, i) large kinks occur between beams and panels (a problem explored 

in [1]), ii) beams are poorly oriented to withstand wind loads on the envelope and iii) the structure 

transparency is decreased. As a consequence, not any parallel mesh is suitable to define node axes. 

For a given mesh, it is always possible to set a gridshell geometry with torsion free nodes by setting all 

the axes with the same orientation (for example vertical). This approach gives torsion-free nodes, but 

generally the node orientations poorly satisfy the three constraints mentioned above. Non-constant axes 
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can also be found for some remarkable surfaces like revolution surfaces but in the general case, it is 

often necessary to get insight on the differential geometry of the grid and surface.  

     

Figure 1: Beam layouts with constant beam height : (left) normal layout with torsion at node and gaps of bottom 

layout, (middle) torsion free layout with gaps of bottom layout, (right) edge offset mesh with torsion free layout and 

perfect alignment of layers. 

In the case of meshes with planar faces, Pottmann et al. showed in [2] the equivalence between having 

torsion-free nodes and the existence of a parallel mesh: a mesh in which all the edges and faces are 

parallel to the mesh, but with different edge lengths. The parallel meshes to a given mesh form a linear 

space. The dimension of this space depends mostly on the pattern (and to a lesser extent on boundary 

conditions). For triangular meshes, the only parallel transformations are homotheties. Then, the space 

of parallel transforms becomes richer and richer as the average number of edges per face increases 

(quadrangular, hexagonal) [3]. 

Hence, due to the dimension of parallel mesh spaces, most triangle meshes cannot be covered by torsion-

free nodes with axes normal to the surface, while it is always possible for hexagonal meshes. For 

quadrangular meshes, one can find proper nodes as long as the edges approximate the principal curvature 

directions of the underlying arbitrary smooth surfaces: these are the only lines along which the surface 

normal undergoes no geometrical torsion. Pottmann et al have indeed shown that the two dual families 

of planar quad meshes that approximate curvature lines are circular and conical meshes [4].  

For a given surface however, principal curvature directions are imposed and can be unsuitable for design 

purposes. For example, Pottmann et al shows the curvature lines on the roof of the Visconti court in Le 

Louvres, designed by architects Rudy Ricciotti and Mario Bellini [5]. The configuration is badly suited 

for a gridshell: there is a high variation in the size and aspect ratio of faces, beams have a poor 

mechanical alignment, and the pattern with its four singularities is subjectively unesthetic. 

Consequently, a hybrid triangular and quadrangular pattern was chosen for the final structure. This 

hybridation strategy is one among many like for example the caravel method developed in [6].  

Many questions arise then for the designer who would like to deviate from principal curvature directions 

and to prescribe the grid layout on the surface. Would it be possible to define an offset which is not 

normal to the surface but tends toward this normal? To what extend this deviation from surface normal 

will influence the mechanical behaviour of the structure? This article addresses these two questions in a 

relatively pragmatic approach in order to provide a set of practical solutions for structural design and to 

enlarge the possible design spaces. Section 2 investigates how a torsion-free layout can yield node axes 

that fit at best the surface normals. The method is based on the linear space of parallel transformations 

and projection on admissible sub-spaces. An evaluation of maximum deviation to normal with 

differential geometry is also proposed. The whole is illustrated in a practical example. Section 3 develops 

practical implementation aspects in the framework of a Pavilion case study [7]. In particular, the 

influence of the beam layout on the structural behaviour of the gridshell is investigated. 

2. Optimizing torsion-free beam layout for alignment with surface normals 

In this section, we study thus practical fabrication constraints and evaluate their relation to particular 

meshes. We build upon the now well-known design space offered by parallel mesh transformations, 

which have been described in [2] and extended to the design of nexorades in [8] . 
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2.1 Parallel meshes 

Discrete offsets satisfy two conditions: the beams are planar and they all meet along a common axis. 

This condition can be written as a linear system of equations, as already mentioned by [4, 9], who 

explored the potential offered by the design space of parallel transformations for mesh modelling. 

Figure 2 represents a torsion-free beam layout constructed from two parallel meshes M and M’. The 

edges of the meshes M and M’ are parallel, and thus coplanar, therefore, the support structure (shaded 

blue region) is planar and without torsion. 

 
Figure 2: Discrete offset direction (orange arrows)  can be defined from two parallel meshes M and M'. The support structure 

consists of planar sections 

We write 𝑿 the nodal displacement between two parallel meshes (i.e. the differences between the 

vertices of M and M’, which is represented with orange arrows in Figure 2), there exists a matrix 𝑨 so 

that equation (1) is verified. 

𝑨. 𝑿 = 𝟎                                                                           (1) 

A lower bound for the dimension 𝑑 of the design space is given in [4] and it has been estimated for 

several common structural patterns in [3], leading to a classification of patterns for gridshell structures. 

𝑑~ 𝑛𝐸 −  ∑ (𝑛𝐸
𝑖 − 2)

𝑖=1..𝑛𝐹

                                                             (2) 

(where nE is the total number of edges in the mesh and nE
i is the number of edges in face i). In practice, 

for a PQ mesh with 𝑛𝐹 faces, the number of degrees of freedom is approximately proportional to 

√𝑛𝐹~2𝑛E. The design space is thus rather small. An orthonormal basis 𝑵 ∈ ℝ3𝑛𝑉,𝑑 of 𝑨 can be found so 

that any vector X can be written as 𝑿 = 𝑵𝑾, with 𝑾 ∈ ℝ𝑑 

𝑨. 𝑿 = 𝟎   ⇔   𝑿 = 𝑵𝑾                                                            (3) 

In equation (3), the column vectors of 𝑵 form a basis of the linear space of parallel transformations. By 

definition, any parallel transformation can be obtained as a linear combination of those vectors. Figure 3 

shows an example of basis for a simple quad mesh. The shaded regions correspond to strips where edge 

lengths are different from the initial mesh. Note that the three translations along X,Y,Z are also parallel 

transformations but preserve edge length and are not represented in Figure 3. 

Practically, the sparse basis N is computed for quadrilateral meshes using a propagation heuristic 

described in [10-11] (see Figure 4). This method defines the various parallel transforms decomposing 

the mesh into quadrangular patches and prescribing the edges length on two sides of the patches, one by 

one. The resulting basis of the linear space is not orthogonal, but its implementation and handling is 

relatively is for a designer. 
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Figure 3: Visualisation of the linear space of 

possible parallel transformations for a 4x4 PQ-mesh 

(dimension of space is 4+4 with 3 translations).

 

 

 

 

Figure 4: Heuristic for propagation of parallel 

transformation in a quadrilateral mesh [12]  from the 

prescription of the lengths of the bold edges.

2.2 Alignment with mesh normals 

Perhaps the most intuitive way to find an optimal offset is to try to fit the normals of the underlying 

shape. This is at least what the engineer’s common sense advises: the optimal way to increase bending 

stiffness is to increase the thickness of the grid in the normal direction. So, depending on the modelling 

paradigm used, the designer has either access to a smooth surface (e.g. in NURBS modelling) or to a 

mesh (e.g. when performing mechanical form-finding). In this last case, one might for example define 

normals to a mesh based on the curvature tensor defined by Cohen-Steiner and Morvan [12] .  

For each vertex, we can thus define a unit normal: these normals can then be stored in a column vector 

𝑽. The best offset is simply found by performing an orthogonal projection of 𝑽 on the subset of possible 

torsion-free offsets. This procedure is illustrated for a polyline with two edges in Figure 5: the design 

input is shown in orange, whereas the basis of normal constructed with equation (3) is depicted in light 

blue. 

Figure 5: Projection of expected normals (V, orange arrows) on the basis of the design space (N, blue arrows) 

With the notations of equation (3), noting that Ni corresponds to the ith vector of the basis of nodal 

displacements, the optimal parallel transform is given by: 

 𝑽∗ = ∑〈𝑽𝒊|𝑵𝒊〉. 𝑵𝒊

𝑖

                                                            (4) 

The operation is done in linear time upon computation of the linear space of parallel transformations. 
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Note that other objectives than minimal deviation from surface normal could be also implemented such 

as constant face offset, alignment with specific direction for example (see detail in [13]). These last two 

constraints have been used indeed for the realization of a pavilion show in Boutillier et al [7]. 

2.3 What differential geometry tells us 

On a smooth surface, the geodesic torsion of a curve with tangent vector 𝑡1 is the rate of rotation of the 

tangent plane of the surface along 𝑡1. Figure 6 represents the interpretation of geodesic torsion: the curve 

is represented by a dashed line: the geodesic torsion measures how much the surface normal 𝑛1 rotates 

along 𝑡 per unit length. 

 

Figure 6: Geodesic torsion measures the rotation of the 

tangent plane of a surface (or its normal n) upon unit 

displacement along the tangent vector of a curve t. 

 

 Figure 7: Mohr circle of curvature tensor 

Geodesic torsion can be calculated using the principal curvature frame (𝑒1, 𝑒2) [14] (Figure 7): 

𝜏 =
1

2
sin(2𝜃) (𝑘2 − 𝑘1)        (5) 

Where: 

- The geodesic torsion 𝜏 is in a unit such as rad/m; 

- 𝑘1, 𝑘2 are the principal curvature; 

- 𝜃 is the angle between the direction of maximum curvature 𝑒1 and 𝑡1. 

This expression can be visualized using a Mohr circle, in the exact same way as a Mohr circle is used 

for plane stresses (see figure 7).  

In the context of torsion-free structures constructed from parallel meshes, the goal of the discrete 

optimization problem is to fit the normal of the surface with torsion-free structure as well as possible. If 

we consider a polyline, this means that consecutive normals are coplanar, and thus that the normal 

surface should be developable (recall that developable surfaces can be defined as envelopes of planes). 

The only curves which satisfy this property are lines of curvature, because they have zero geodesic 

torsion. Indeed, in Figure 6, it seems obvious that the surface normals 𝑛2 and 𝑛1 are coplanar if and only 

if the angle 𝑑𝜏 (local geodesic torsion) is equal to zero. 

We introduce Φ (s0) as the integral of geodesic torsion along the curve. It can simply be interpreted as 

the angle between the surface normal and the normal of the developable surface that was initially aligned 

with the surface normal at the start. 

Φ (s0) = ∫ 𝜏 𝑑𝑠
𝑠0

𝑠𝑚𝑖𝑛
     (6) 

The optimal way to fit a developable surface along the normal is simply computed by finding the 

maximal (rightwards) and minimal (leftwards) value of Φ. The minimal error possible between the 

normal of the surface and the rules of a developable surface going through the curve is thus given by 

equation (7). 

ΔΦ =
1

2
(max(Φ) − min (Φ))     (7) 

Interestingly, this formula does not depend on the discretization, which is verified with numerical 

experiments. 
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2.4 Application 

The projection technique has been applied to a surface based on the Berlin Hippo Haus (Figure 8). The 

maximal deviation from surface normals is 15°, and 90% of normal have a deviation from surface normal 

inferior to 7°. The reason for it is not only linked with the relevance of the method but also to the fact 

that the two domes are almost spherical surfaces where geodesic torsion is reduced for any curve.  

One notes also that the distribution of angles is not very sensitive to the number of subdivisions, which 

can be understood by the smooth setting. Indeed, the maximal deviation with the surface normal is 

expected to be related to the integral of torsion of the curve. Figure 9 displays the distribution of 

deviation angles (the angles between the nodal axis and the surface normal) for two mesh densities. 

 

Figure 8: Torsion-free support structure for the Hippo 

Haus in Berlin. The mesh is based on a surface of 

translation, and is therefore not a curvature line 

network. The deviation between nodal axes and 

surface normal is inferior to 15°.

 

Figure 9: Distribution of deviation angle for two 

subdivisions of the Hippo Haus. 

3. Case study 

3.1 Practical implementation 

As the mathematical theory of parallel meshes says that there exists a solution that minimizes the 

deviation from surface normal, it is worth searching for it with any optimization method: it will 

converge. Indeed, the practical implementation of the linear algebra methods described in previous 

section require the search of a basis of the null space which might seem tedious for many designers. On 

the contrary, many of them are used to work with geometric optimizers such as Kangaroo [15], ShapeUp 

[16] or equivalent… Practically, edge parallelism is a constraint which can easily be introduced within 

these tools. Coupling it with a constraint on the distance between two parallel edges and another 

constraint linked with the deviation from surface normal, one gets a simple set of three families of 

constraints whose weights can be adjusted so that the parallelism constraint is almost strictly satisfied. 

Computation time might be a little bit higher than using linear algebra, but the implementation time is 

close to zero. Practically on all the examples tested with Kangaroo by the authors, one gets a suitable 

parallel mesh in almost real time and results are in good agreement with the previously implemented 

method. 

3.2 Reference mesh of the case study 

The reference geometry of the case study is that of a pavilion constructed by Boutiller et al [7] and 

shown in figure 10. It has a complex grid geometry with many singularities in order to achieve i) proper 

alignment of the grid with free edges and ii) convergence of the grid toward the support. It is almost 

funicular from dead load and has 56 planar panels. It is made of wooden beams with rectangular cross 

sections 45x70mm forming a torsion-free layout. Their connections are achieved by 5mm plywood 

boxes (laser cut) which ensure the bracing of the structure as well. The polls at the four supports are 

built aligned with the structure tangent plane in order to minimize bending moments. The total covered 

area is close to 12 sqm with a maximum span of 4 m. 
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Figure 10: Side view of Boutillier et al pavilion [7] (left) with top view of the reference mesh (right) 

3.3 Generation of the parallel mesh and comparison with offset mesh 

In this section, two beams layout are generated. In the first one, a parallel mesh minimizing the deviation 

from surface normal at a distance of approximately 100 mm from the reference mesh is computed. The 

corresponding beam layout is torsion free, as explained in previous section. In the second one, the beam 

planes are aligned with the bisecting planes of adjacent panels, they are thus aligned with surface 

normals but the resulting layout exhibits torsion at nodes. In the first model, the deviations of beam axes 

from surface normals range 0° to 18.5° with and average value of 6.3° (see figure 11 left). In the second 

model, the torsion at nodes (measured as the minimal cone angle containing beam midplanes 

intersections) range from 0° to 5.9° with an average value of 2.1° (see figure 11 right). In terms of 

fabrication constraint, note that a cone angle of 0.57° corresponds to a 1 mm distance between axes for 

a 100 mm beam. Therefore, if the layout with torsion at nodes should be built, one should be able to 

design a node that can accommodate size variation reaching up to 10 mm. 

          

Figure 11: Deviation of the beam layout from ideal solution: (left) angular deviation of beams midplane from 

surface normal in the torsion free layout and (right) angular opening of the cone containing all midplane 

intersection in the layout with torsion at nodes. Minimal values are in green, maximal in red. 

3.4 Influence on the mechanical behaviour 

In this section, the two beam layouts are submitted to the same loading at nodes and their structural 

behaviour are compared with help of Karamba by just varying the local axes of the beams. In this case 

study, joints are supposed rigid which is not the case in the prototype but sufficient for the purpose of 

the present paper. If one considers the cross section used for the prototype (70x45), differences between 

the two layouts are negligible, in terms of displacements, stresses or critical buckling load. If one reduces 

the width of the cross sections to 4.5mm, then differences start appearing and the layout with torsion at 

nodes appears to underperform the torsion free layout of about 20% (see table 1). Looking at the forces 

in the structure, one observes that strong axis bending moments and normal forces are comparable in 

both layouts but that weak axis bending moments and torsion are 20% and 50% higher in the model with 

geometric torsion, respectively. Small axis eccentricities induced by nodal torsion causes hence 

additional deformations in the structure that one cannot neglect. Good fabrication properties hence go 

along with good mechanical performances. 
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It should be here noted that introducing the bracing provided by the plywood boxes cancels out the weak 

axis bending moments so that, in the braced configurations, the two layouts have again comparable 

performances.   

Table 1: Comparison of max deflection, average normal forces and average bending moments, as well as critical 

buckling load for both beam layout for three configuration (i) with standard cross sections [70x45], (ii) with 

reduced cross sections [70x9], (iii) with reduced cross sections and bracing) structures. Values are given for a 

100N load applied at each node. 

 Layout 
Disp_max 

[cm] 
N_av [N] 

M_av_y 

[N.m] 

M_av_x 

[N.m] 

M_av._z 

[N.m] 
F_cr 

Conf. 1 

[70x45] 

Torsion 

free 
.091 309 9.8 1.9 8.2 58 

Normal .091 307 9.7 1.9 8.7 58 

Conf. 2 

[70x4.5] 

Torsion 

free 
1.63 -355 15.6 0.3 3.5 0.12 

Normal 1.84 -355 15.6 0.3 4.2 0.36 

Conf. 3 

[70x4.5] 

+bracing 

Torsion 

free 
0.40 -268 5.8 0.1 0.0 0.87 

Normal 0.41 -267 5.8 0.1 0.1 0.86 

 

4. Conclusion 

The design space of curved envelopes is strongly constrained when trying to obtain exact rationalization 

properties such as planar faces or torsion-free beam layout and node axes aligned with surface normal. 

In this article, we looked at how deviation from these strict constraints can increase the design freedom.  

First a method that gives priority to torsion-free layouts and optimizes the nodal axes to fit surface 

normals was proposed. This method turns to a linear algebra minimization problem and proved to be 

computationally efficient. The quality of the results depends on the surface geometry and on the 

deviation of the layout from the principal curvature network. 

Second, the influence of the beam layout in terms of deviation from surface normal and geometric 

torsion at nodes was investigated in a practical case study. It was found negligible in practical cases 

where the differences between strong axis inertia and weak axis inertia are not high. In the case of slender 

members, it was found that good mechanical properties go along with good fabrication properties. This 

interesting result should be further investigated on more examples. 
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