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Abstract

Shellular structures, i.e., cellular structures composed of a single smooth thin shell, have been gaining
attention for their unique property such as high stiffness for low density, and division of space into two
subvolumes. Since they have negative Gaussian curvature, they cannot be constructed by simply bend-
ing sheet material. This study aims to efficiently construct shellular structures from sheet material by
assembling a single type of developable pieces. The existing method allows dividing some of the triply
periodic minimal surfaces (P, D, and G surfaces) into a single type of narrow strip by periodic geodesic
net connecting monkey saddles on them. We apply this division method to P, D, and G surfaces of
constant negative Gaussian curvature, a family of tubular surfaces with different slenderness. Due to the
intrinsic isometry of the family, some elements of the family can consist of the congruent strip, enabling
reconfiguration between surfaces with different topologies or slenderness. We fabricate physical models
by approximating the strip with a developable surface. The straight strip allows for a high efficiency of
material and can be cut from a roll of sheet. We believe this reconfigurable modular system can be a
new geometric basis for self-build and self-assembly assuming disassembly and reconstruction.
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1. Introduction
Background: shellular structures Cellular structures composed of a shell existing in microstructures
of some living organisms [1, 2, 3] have recently been named “shellular structures” and attracting atten-
tion for their properties such as high stiffness for low density and partitioning space into two subvolumes.
They have been applied for engineering purposes such as infill of 3D printing [4], heat exchanger [5],
architectural shell [6]. The surfaces composing shellular structures are often expressed as triply periodic
minimal surfaces (TPMSs), the unit of minimal surfaces smoothly connecting through the boundary and
forming periodic tessellation. Simple examples of TPMSs with cubic symmetry are Schwarz’ primitive
(P) surface and diamond (D) surface [7], and Schoen’s gyroid (G) surface [8]. In each example, the
orientable surface divides space into two congruent subvolumes called labyrinths [8], whose skeletal
graph [8] is the cubic graph, the diamond graph, and the Laves graph [9], respectively.

Shellular structures cannot be constructed simply by bending sheet material, due to the negative Gaussian
curvature of the surface. Existing works have solved this problem with origami [10] or division into
developable pieces [11, 12]. Most of the previous works aim to construct a single type of surface.

Contribution This paper aims to construct multiple types of shellular structures from a single type
of piece. First, in Section 3. we explore unexplored families of surfaces of constant negative Gaussian
curvature (K = −1 surfaces). In particular, we construct one-parameter families of P, D, and G surfaces
with varying slenderness that are intrinsically isometric to each other. The slender variations have differ-
ent volume ratios of two subvolumes and different dimensions of the unit cube, extending the potential
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application. For example, in architectural use, the slender variations behave like a lightweight frame.
To divide the surfaces, we apply the method proposed by past work in crystallography [13] (reviewed in
Section 2.). We extend their method to the families of K = −1 surfaces in Section 4.. The method can
divide the surfaces into a single type of hyperbolic strips. In Section 5. we indicate the reconfigurable
variants, which can be assembled from the same pieces. This is an advantage in fabrication in that we
only need to produce one type of strip to construct multiple types of surfaces. Moreover, if the joint sys-
tem allows for disassembly, the strips can be reused to construct the other surface. Section 6. proposes
a flattening method of K = −1 strip for fabrication from sheet material. The narrow strip shape can be
flattened with a smaller approximation error. Moreover, the strip has a straight center line, allowing for
high material efficiency when cutting from a sheet.

2. Review: periodic net on Poincaré disk model and P, D, G surfaces
This section provides the basic mathematical concepts that we use in our construction, namely the
method for mapping a grid in hyperbolic plane H2 to P, D, and G surfaces proposed by Ramsden et
al. [14] and drawing periodic geodesic net on them based on the grid as proposed by Evans et al. [13].

2.1. Poincaré disk model

The Poincaré disk model is used to represent H2 in E2 in this paper. The model conformally maps H2

having K = −1 in the region of unit circle C, the circle at infinity. In this model, a line (geodesic) is
expressed as a circle intersecting orthogonally to C, including the diameters of C.

2.2. Grid of monkey saddles

Ramsden et al. [14] proposed a covering map from H2 to TPMSs. A regular quadrilateral degree-6 tiling
on H2 (all the internal angles are π

3 ) can be mapped to P, D, and G surfaces so that the corners of the
quadrilateral are on the monkey saddles of them (Figure 1 Top).

Figure 1: Top: regular quadrilateral tiling of degree-6 on H2, P, D, and G surfaces (from left to right).
Bottom: division d = {1, 2} applied to each surface.
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2.3. Periodic geodesic net

Evans et al. [13] proposed a division method of P, D, and G surfaces into a single type of strip by
connecting pairs of monkey saddles by geodesics. First, the grid points in H2 contained in E2 domain
are denoted by a pair of integers {Z,Z} (Figure 2 (a)). Then, a vector connecting two grid points is
specified. We call this as division d = {p, q}. d must be chosen so that p and q are a coprime pair. In
Figure 2 (b), d = {1, 2} is applied, and the geodesic net is colored light blue. In the domain out of E2

colored gray, geodesics are drawn so that they have 3-fold symmetry at grid points and 2-fold symmetry
at the midpoint of them.

Figure 2: (a) Notation of grid points in E2 domain. (b) Geodesic net with d = {1, 2} colored light blue.

The strip is composed of unit triangles infinitely tiled by 2-fold symmetry at the midpoints of two edges
included in the strip. Moreover, we can take any triangle {0, 0},P + kd,P + (k + 1)d as unit, where
P is a corner of the strip on the opposite side of {0, 0}, and k ∈ Z, as shown in Figure 3 (a) and (b).
Because every corner of the strip has an angle of π

3 due to the 3-fold symmetry, the sum of internal
angles of the unit triangle is constant, 2

3π. In a unit triangle {0, 0},P + kd,P + (k+ 1)d, the geodesic
segment between P + kd and P + (k + 1)d intersects with the Euclid line between them in angle of

π − 2
3π

2
=

π

6
(1)

because the geodesic is represented by circular arc (Figure 3 (c)). As a result, the grid points P + kd at
the corners of a strip on the opposite side of {0, 0} are colinear. This line also contains inversions of d
and −d about C. This colinearity is used to find grids for surfaces varying slenderness in Section 3.1..
The area of the unit triangle is constant π

3 , subtraction of the sum of the internal angles from π, using
the fact from hyperbolic geometry. Therefore, a strip with a longer edge has a narrower width.

P–d

P+d
P P

d d d

–d –d –d

P+d

P–d

P

L
1/L

C

Figure 3: (a)(b) Strip tiled by unit triangle in two ways. (c) Colinearity of grid points on corner of strip.
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3. Isometric family of TPKSs with varying slenderness
To achieve a reconfigurable module, one surface needs to be intrinsically isometric to the other surface.
We suppose triply periodic K = −1 surfaces (TPKSs), whose isometry is guaranteed by Minding’s the-
orem [15]. In fact, the original minimal P, D, and G surfaces are isometric, allowing for transformation
into each other through Bonnet transformation [16], but variations of isometric surfaces are limited. In
contrast, TPKSs can vary their slenderness while preserving intrinsic isometry.

3.1. Transforming grids of TPKSs in H2

We construct P, D, and G surfaces of K = −1 by considering an isometric covering map from H2.
To make slender variations, we first reconstruct grids for each surface ‘canonically’, whose direction
coincides with the direction of varying slenderness by a pair of d making the angle of π

3 shown in
Figure 4 top: {1, 0}, {0, 1} for P surface, {1, 1}, {−1, 1} for D surface, and {1, 2} and {−2, 1} for G
surface ({2, 1} and {−1, 2} for G surface with the other chirality). The strips make closed rings in each
d. Let the Euclid distances from {0, 0} to the pair of d be L and l. L and l are equal in the original
grids. Here we transform the grids while varying a ratio of L and l. For the slender surfaces to allow
for drawing periodic nets with any d as the original surfaces, the colinearity of the grid points we saw in
Section 2.3. must be preserved. We find the following implicit functions of L and l satisfying this nature
for P, D, and G surfaces:

2Ll − 1 = 0, (2)

3L2l2 + L2 + l2 − 4Ll = 0, (3)

27L5l3−54L4l4+27L3l5+5L5l−25L4l2+48L3l3−25L2l4+5Ll5−L4+5L3l−15L2l2+5Ll3−l4 = 0,

(4)
respectively. Figure 4 bottom shows the transformed grids.

These functions are plotted in Figure 5 left. Now let the length of these geodesics be LH and lH . Using
the formula for hyperbolic distance from the center of C,

LH = 2 tanh−1(L). (5)

We plotted functions of LH and lH obtained by replacing L and l in Equation 2, 3, and 4 by LH and lH
(Figure 5 right). We regard the ratio LH

lH
as the slenderness of the surface and denote it by s:

s =
LH

lH
=

tanh−1(L)

tanh−1(l)
. (6)

A pair of surfaces with inverse slenderness s, 1s are congruent with opposite normal directions.

3.2. Immersion of TPKSs in E3

We immerse the surfaces in E3 through numerical simulation. First, as the initial configurations, we
provide polyhedra homeomorphic to P, D, and G surfaces whose faces compose a grid covered from
the canonical grid constructed in Section 3.1.. The polyhedra for P and D surfaces can be provided by
removing specific faces from the tessellation of cubes (known as the regular skew polyhedron {4, 6|4})
and rhombic dodecahedra, respectively. For G surfaces we use the polyhedron discovered by Norman
Johnson [17]. These polyhedra allow for varying s as the smooth surfaces; using polyhedra of the target
s can stabilize the simulation. Then, we subdivide the minimum unit of both the grid on H2 and the
corresponding faces of the polyhedra into triangulated meshes, MH in H2 and M0 in E3 (Figure 6 (a),
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Figure 4: Canonical grids of P, D, and G surfaces of s = 1 (top) and s = 2 (bottom). Grids are composed
of a pair of geodesic nets colored dark gray and light gray.

(b)). Finally, we impose the following constraints on the unit face M0, the adjacent quads Mi = Ti(M0)

transformed using the global symmetry, and a mesh Mall combining M0 and all the Mi.

C1 Vi = Ti(V0);

C2 E0 = kEH with some constant k;

C3 The angles between adjacent faces of Mall are 0,

where V∗ is the set of vertices of M∗, and E∗ is the set of edges of M∗. C1 is for the global symmetry of
the surface. C2 is for similarity between MH and M0. C3 is for the smoothness of the surface. Among
these, C1 must be strictly satisfied, but C3 must not be strictly satisfied. We obtained a configuration
satisfying these constraints by minimizing the sum of their potential energy U :

U := wC1 ∗ UC1 + wC2 ∗ UC2 + wC3 ∗ UC3 (7)

where U∗ is the potential energy of constraint ∗, and w∗ is the weight of U∗. w∗ are set so that wC1 >

wC2 >> wC3. We solved this problem as dynamic relaxation of a mass-spring system using Kangaroo
2 [18] on Grasshopper. C1, C2, C3 are implemented using Transform Goal, LengthRatio Goal, Hinge
Goal, respectively. The resulting surface is a scaled surface with the factor of k, so we finally scale the
surface by 1

k . While varying s, the dimension of the unit cube and volume ratio of the two subvolumes
also vary. We only confirmed the existence of TPKSs by numerical simulation. Note that Hilbert’s
theorem [19] states that there is no complete K = −1 surface with C2 continuity immersed in E3. We
allow for the periodic monkey saddles where the surface has C1 continuity. Whether or not there are no
other points with C1 continuity is not yet revealed.
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Figure 5: Functions of L and l (left) and LH and lH (right) for each surface. The intersections with gray
curves are the states with specific s.

Figure 6: Constructing G surface of s = 2 in E3 thorough simulation. (a) Unit faces in H2. (b) Initial
configuration. (c) Final configuration.

4. Division
While varying the parameter s of TPKSs, the grid points of monkey saddles transform as shown in
Figure 4. We apply the method [13] reviewed in Section 2. to the transformed grid to divide the surfaces
into a single type of strip. Figure 7 shows the surfaces of s = 2 divided in d = {1, 2}.

5. Reconfigurability
This section finds reconfigurable surfaces from the surfaces divided in Section 4. by evaluating the con-
gruence of the strip. Due to the intrinsic isometry among K = −1 surfaces, strips are congruent if their
boundary curves drawn on the disk coincide. Figure 8 (a) shows the parameters of strip configuration.
Let the center of C be O, and the corners of the strip on the opposite side of O be Pk(k ∈ Z), and the
hyperbolic midpoint of OPk be Mk. Then, the hyperbolic distance xH between Mk and Mk+1 is con-
stant for any choice of k, due to the periodicity of the strip. By connecting Mk and Mk+1 by a geodesic,
the center line m of the strip can be drawn.

Let the angle bisector of two edges of the strip starting from O be n, and the intersection of m and n

be N . Then, let the signed hyperbolic distance between Mk and N be yH,k (positive if z component of
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Figure 7: P, D, G surfaces of s = 2 divided in {1, 2} (from left to right).

−−−→
OMk ×

−−→
ON is positive). Here, we take

yH = yH,k mod xH . (8)

The strip configuration can be determined by the two parameters xH and yH . xH represents the length of
the unit of the strip. The width of the strip is also determined by xH due to the area-preserving property
shown in Section 2.3.. yH represents the difference in ‘phase’ of the two opposite sides of the strip. We
plot the strip configuration with the horizontal axis xH and the vertical axis yH

xH
∈ [0, 1] (Figure 9). The

surfaces are reconfigurable at the intersections of the curves, where the strip configurations are congru-
ent. We find the plots have periodicity; intersections representing the same pair of surfaces repeatedly
appear. It revealed that the reconfigurable sets of surfaces share all the grid points on H2 (Figure 10).
Thus they allow for choices of d. Choosing d closer to {0, 0} makes a wider strip, and choosing d

farther from {0, 0} makes a narrower strip. The narrower the strip, the longer the edges to be connected
(and the assembly time). On the other hand, when approximating the strip by a flat surface, a narrower
strip has less approximation error, discussed in Section 6.3..

m

n
n

mwH
wH

yH

yH
xHxH

Pk

Pk

O O

Mk

Mk

N

C

N

Pk+1

Pk+1
Mk+1

Mk+1

(a) (b)

Figure 8: (a) Parameters xH and yH representing the strip configuration. (b) Flattened strip.

6. Fabrication from sheet material
6.1. Flattening K = −1 strip

We consider the approximation of the K = −1 strip obtained in Section 4. by a developable K = 0

strip. If the target surface is just one, the strip can be developablized with a better approximation by con-
structing rulings in the conjugate direction of the geodesic divisor. However, if there are multiple target
surfaces, their conjugate direction is generically different. Therefore, we propose flattening method
neutrally works for every d. See Figure 8. First, in E2, we straighten m isometrically. The center of

7



Proceedings of the IASS Annual Symposium 2024
Redefining the Art of Structural Design

Figure 9: Plots of strip configuration. Surfaces are reconfigurable at intersections.

Figure 10: Reconfigurable sets of surfaces. Each set shares grid points in H2.

rotational symmetry Mk can be mapped together. Then, in H2, we measure the width of the strip wH

between m and the boundary in the direction orthogonal to m, in the range of a unit of the symmetry
(colored gray). Finally, in E2, the boundary curve of the unit can be constructed by taking points distant
from m by wH . All the boundary curves can be drawn with the rotation about Mk. A flat strip with the
straight center line can be cut from a sheet with high material efficiency. A roll sheet can also be used.

6.2. Assembly

Edge-edge connection We made physical models by connecting strips at the edges (Figure 11). We
equally divided the boundary by an even number and added joinery (a). The strips are laser-cut from
ALPHAYUPO [20] with t = 0.5mm and assembled into D and G surfaces with s = 1,d = {3, 2} (b).

Face-face connection We can divide a surface in two different d and use them as two layers. In this
case, the strips can be joined at their faces. Strips can also be woven if the sheet is sufficiently thin
because the grid becomes two-colorable with all the vertices having degrees of even numbers: degree-4
vertices at the intersection of two geodesics and degree-6 vertices at the monkey saddles.
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Figure 11: (a) Strip with joinery. (b) Physical models of D and G surfaces from single type of strip.

6.3. Discussion: accuracy of approximation

Our flattening of the strip maintains the length in the width direction but ignores the stretch in the length
direction that occurs as distant from m (Figure 8). The stretching factor r(wH) can be expressed as

r(wH) = cosh(wH), (9)

referring to the parameterization of a K = −1 surface of hyperboloid type [21]. Therefore, the strain ϵ

in the length direction increases exponentially as wH increases:

ϵ =
r(wH)− r(0)

r(0)
= cosh(wH)− 1. (10)

As the strip gets longer, the maximum Euclid width ON in Figure 8 (a) converges to 2 −
√
3, and ϵ

converges to 2√
3
− 1 ∼ 0.1547. In actual construction, the resulting surface is not a K = −1 surface but

a surface determined by the balance between bending and in-plane deformations.

7. Conclusion
We proposed a method for constructing the family of P, D, and G surfaces of K = −1 with varying
slenderness and divided them into a single type of strip. By utilizing the intrinsic isometry of the family,
we revealed the reconfigurable sets of surfaces that can be assembled from congruent strips. We approx-
imated the strip by developable surfaces to fabricate from sheet material. We believe this reconfigurable
modular system can be a new geometric basis for self-build or self-assembly. For example, it can be
applied to temporary frame or shell structures assuming disassembly and reconstruction, or concrete
formwork for more permanent structures. The local connection of strips does not determine the global
shape of the surface; for easier assembly, we need to establish a notation method that contains informa-
tion on a global connection. Also, this paper only shows smooth surfaces to be divided and does not
investigate the behavior of the piecewise-developable model. This remains the future work of our study.
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elbar sind oder nicht; nebst bemerkungen über die flächen von unveränderlichem krümmungsmaaße.,”
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