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Abstract 
Membrane-tensegrity composite structures have outstanding characteristics such as lightweight, simple 
assembly, and compact storage for transportation. However, due to the significant variation in the tensile 
stress applied to the membrane material, it is challenging to model membrane material appropriately and 
accurately understand the overall structure's equilibrium shape and stiffness. Therefore, we investigate 
some analysis methods using a simple model of membrane-tensegrity composite structures and verify 
the validity of the analysis methods by comparing the real behavior with the analysis results. We 
modeled the membrane-tensegrity composite structure by replacing the membrane material with truss 
elements based on a physical model, conducted tensile tests of the membrane materials adapted to the 
replacement method, and performed form-finding using the dynamic relaxation method. Furthermore, 
we aimed at the application to real buildings and devised a more stable membrane-tensegrity composite 
structure with Y-shaped compression members. We also confirmed that the analysis method of this study 
could be applied to this model. 

Keywords: tensegrity, membrane structure, form-finding, stiffness evaluation, physical model experiment  

1. Introduction 
The current construction industry occupies a very large proportion in terms of the use of fossil resources, 
the emission of industrial waste, and the emission of greenhouse gases, and there is a demand for 
reducing these environmental impacts and transforming into a sustainable industrial structure. R. 
Buckminster Fuller (1895-1983) is one of the few pioneers who quickly raised this issue in the 
architectural field in the last century. He has been involved in the development and proposal of various 
lightweight structures from the perspectives of resource saving and reducing environmental impact, and 
the tensegrity structure is one of them. 

Tensegrity is a structural system that utilize continuous tensile forces and discontinuous compressive 
forces, and they stabilize by introducing initial tension into the tensile members. Replaced multiple 
tensile elements of tensegrity structures with a single membrane material are membrane-tensegrity 
composite structures. A notable example is the “MOOM Pavilion” designed by C+A [1]. This design 
demonstrates advantages such as lightweight construction, straightforward assembly, and compact 
storage for transportation. However, the membrane material in membrane-tensegrity composite 
structures does not form minimal surfaces, and there is significant variation in tensile stress on the 
membrane. Because of the above, it is challenging to model the membrane material appropriately when 
creating analysis models. Therefore, membrane-tensegrity composite structures present challenges in 
grasping the equilibrium shape and evaluating the overall stiffness. While there are some studies on the 
equilibrium shape and stability of membrane-tensegrity composite structures ([2]-[4]), there is little 
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research on methods for evaluating the stiffness and behavior subjected external loading (e. g. Tan et al. 
[5]). Considering the application to real structures, it is important to establish an analysis method that 
can accurately capture the behavior under external forces. Therefore, the authors have been conducting 
research aimed at establishing a simple and accurate method for evaluating stiffness by replacing 
membrane materials with truss elements. 

In our previous research [6], we investigated the analysis method using a simple model with compression 
members in one direction (plane arch model), as shown in Fig. 1, and we confirmed the effectiveness of 
the analysis methods by comparing the real behavior with the analysis results. As a result, we found that 
we could accurately determine the equilibrium shape using the proposed analysis method but could not 
accurately grasp the behavior under external forces. Therefore, in this study, we improved the modeling 
method for membrane materials and demonstrated the validity of the analysis method by comparing the 
real behavior with the analysis results again. Moreover, we found that the model used for investigating 
the analysis method shown in Fig. 1 was very unstable, and it was difficult to conduct studies on a larger 
scale. Therefore, we devised a more stable membrane-tensegrity composite structure with Y-shaped 
compression members (YC model) and confirmed whether the analysis method of this study could be 
applied to the YC model as well. 

 

 

Figure 1: Photos of physical model (plane arch model). 

2. Form-finding method of plane arch model 

2.1. Making method of physical model 
Fig. 2 shows the making method for the plane arch model (shown in Fig. 1). To create a cutting diagram 
(natural condition) of membrane material, we created a 3D model according to geometric rules, as shown 
in Fig. 2(a). We set the compression members to the position of the sides of a regular polygon and 
determined their length by extending each side of the polygon based on the central angle θ. Then, by 
rotating the compression members as shown in the diagram, we unfolded the 3D model into the plane, 
created a simple rectangular development diagram, and created a cutting diagram by scaling down the 
development diagram (Fig. 2(b)). In the cutting diagram, the X-direction corresponds to the warp 
direction of the membrane material, the Y-direction corresponds to the weft direction, and the 
compression members are parallel to the X-direction. Here, the cutting diagram was created by scaling 
down the development diagram to 0.65 times in both directions. We made the compression members for 
the same length as in the 3D model and the development diagram, and created the membrane material 
according to the cutting diagram. Finally, by inserting the compression members into the cut membrane 
material and pulling both ends until they reach the same value as the span of the 3D model (Fig. 2(c)), 
and we introduced tension into the membrane material. However, as we scaled down the membrane 
material in both directions, we could not keep the span between the adjacent compression materials, and 
thus, we could not successfully introduce tension into the membrane material. Therefore, as shown in 
Fig. 1, we inserted the spacer members to constrain the span between the compression materials in the 
Y-direction and introduce tension into the membrane material. 
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Figure 2: Making method of physical model of plane arch model. 

2.2. Replacement method of membrane material 
In this study, we aimed to model the membrane material as simple and accurate as possible. We replaced 
the membrane material with truss elements (equivalent membrane elements; EMEs) by connecting parts 
of the membrane material where tension forces particularly act with straight lines concerning the 
physical model, as shown in Fig. 3(a). However, setting the stiffness and cross-sectional shape of the 
EMEs based on visual information obtained from the physical model was difficult. Therefore, in this 
study, we attempted to determine the properties of the EMEs by conducting tensile tests on the 
membrane material adapted to the replacement method.  

Fig. 3(b) presents the analysis model created by replacing the membrane material with EMEs. If we use 
the replacement method shown in Fig. 3(a), two models can be considered: “without intersections,” the 
crossing of EMEs is not considered, and “with intersections,” the crossing of EMEs is considered. In the 
analysis model “with intersections,” EMEs that cross each other share a node, as shown in the figure, 
and transmit the tension to each other. We conducted form-finding using these two models. Moreover, 
in parts where we inserted spacer members in the physical model, we restrain the movement in the Y-
axis direction of eight points on both sides, as shown in Fig. 3(b), so that we can prevent the reduction 
in width between the adjacent compression members, the same as the physical model. 
 

 

Figure 3: (a) Replacement method, (b) Analysis models. 
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2.3. Tensile test of membrane material 
To examine the load-strain relationship of the EMEs, we conducted tensile tests by pulling two points 
at both ends of the membrane material similar to the physical model. As shown in Fig. 4(a), we cut out 
test pieces in the direction of the EMEs. The test pieces in the direction of EME A (angle θA) are labeled 
A1, and the test pieces in the direction of EME B (angle θB) are labeled B1 (θA  is 23.34 degrees 
concerning the warp direction, and θB is 37.21 degrees). Furthermore, to match the boundary conditions 
of the physical model and the test pieces, we glued fixtures of the same diameter as the physical model’s 
joints (10 mm) to both ends of the test pieces and conducted the tensile test (Fig. 4(b)). After conducting 
several tests with varying widths of the test pieces, we found that increasing the width beyond 60 mm 
did not alter the load-strain relationship. Therefore, we fixed the width at 60 mm for the fabrication of 
the test pieces. This tensile test is a uniaxial tensile test (Fig. 4(c)). 

On the other hand, in the equilibrium states of the membrane-tensegrity composite structures, tensile 
forces act in various directions within the membrane material, not just in one direction. Therefore, it is 
unclear whether we can accurately estimate the stiffness of the EMEs using the load-strain relationship 
equations for directions A and B of the EMEs determined by the uniaxial tensile test. Hence, as shown 
in Fig. 4(d), we applied initial tension stress to the orthogonal direction of the axis of the test pieces by 
inserting rods, and we conducted a tensile test. We can predict that the load-strain relationship of EMEs 
will change depending on the length of the inserting rod, but it is difficult to predict how much tension 
will act in the orthogonal direction of the EMEs in the real model. Therefore, we set the length of the 
rod according to the same method of making the physical model, as shown in Fig. 4(d). By doing that, 
we created test pieces that act roughly the same tensile stress as real phenomena in the orthogonal 
direction. This tensile test is a biaxial tensile test, and the test piece in the direction of EME A (angle 
θA) is labeled A2, and the test piece in the direction of EME B (angle θB) is labeled B2. 
 

 

Figure 4: Method of tensile tests 

Fig. 5 shows the load-strain relationships obtained by the least squares method from the tensile test 
results. We compared the results of the uniaxial tensile test with the biaxial tensile test, as shown in the 
figure. We can confirm that the results of the biaxial tensile test showed higher stiffness than those of 
the uniaxial tensile test. The load-strain relationship equations obtained from the results of the uniaxial 
tensile test are Eq. (1) and Eq. (2), while those obtained from the biaxial tensile test are Eq. (3) and Eq. 
(4). We tried to use these equations to perform form-finding using the dynamic relaxation method 
(Zhang and Ohsaki [7]) and compared the real behavior with the analysis results. 
 

 𝑆𝑆A1(𝜀𝜀) = 8.6𝜀𝜀5 − 11.3𝜀𝜀4 + 12.7𝜀𝜀3 − 2.3𝜀𝜀2 + 6.6𝜀𝜀      [N] (1) 

 𝑆𝑆B1(𝜀𝜀) = 12.9𝜀𝜀5 − 30.1𝜀𝜀4 + 34.4𝜀𝜀3 − 14.0𝜀𝜀2 + 8.7𝜀𝜀      [N] (2) 
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 𝑆𝑆A2(𝜀𝜀) = 18.1𝜀𝜀5 − 40.2𝜀𝜀4 + 47.8𝜀𝜀3 − 18.8𝜀𝜀2 + 10.9𝜀𝜀      [N] (3) 

 𝑆𝑆B2(𝜀𝜀) = 10.2𝜀𝜀5 − 25.1𝜀𝜀4 + 33.4𝜀𝜀3 − 15.6𝜀𝜀2 + 10.2𝜀𝜀      [N] (4) 
 

 

Figure 5: Tensile test results. 

In our previous research [6], we also conducted biaxial tensile tests using fixtures with a diameter of 5 
mm. By comparing the results of biaxial tensile tests using a diameter of 5 mm fixtures with those using 
a diameter of 10 mm, we examined the relationship between the adhesive area of the fixture and the 
stiffness of the EMEs. The results compared in Fig. 6 show that when the diameter of the fixture doubles, 
the load approximately doubles as well. Thus, we found that as the adhesive area between the membrane 
material and fixture increases, the stiffness of the EMEs also increases. Therefore, we can consider the 
possibility of predicting the load-strain relationship of the EMEs for the real scale model from the results 
of tensile tests using smaller test pieces. 
 

 

Figure 6: Relationship between the diameters of the fixtures and the stiffness of the EMEs. 

3. Comparison of real phenomenon with analysis results of plane arch model 
We compared the measurement result of the equilibrium shape immediately after model fabrication and 
the physical model experiment result with the form-finding results. In this study, we focused on two 
symmetric model patterns: “Model-1,” which is not considered the crossing of the EMEs and used the 
results of the uniaxial tensile test for the load-strain relationship equations of the EMEs, and “Model-2,” 
that is considered the crossing of EMEs and used the results of the biaxial tensile test for the load-strain 
relationship equations of the EMEs. For the self-weight, in Model-1, we evenly distributed the total 
weight by the nodal number and input to all the nodes, while in Model-2, the weight of the compression 
members was input only to the nodes at both ends of the compression elements, and we evenly 
distributed the weight of the membrane material and input to all the nodes. 
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The results of comparing the equilibrium shapes indicate that Model-2 matches the overall shape of the 
physical model more closely than Model-1, as shown in Fig. 7(a). Furthermore, we compared the load-
displacement relationships of the experimental results with the form-finding results when we applied 
external forces, as shown in Fig. 7(b). From the experimental results (Fig. 7(c)), we can confirm that the 
behavior of Model-2 aligns very closely with the results of the physical model experiment. Additionally, 
while it is difficult to measure the deformed shape during the physical model experiment, we can see 
that the deformed shape of the analysis results and the real phenomenon are very close, as shown in Fig. 
7(b) and Fig. 7(d). From these results, it is evident that considering the crossing of EMEs and using the 
results of the biaxial tensile test for form-finding can accurately capture the equilibrium shape and the 
overall stiffness. 
 

 

Figure 7: Comparison of the analysis results with the real phenonenon. 

4. Analysis method of Y-shaped compression model (YC model) 

4.1. Making method of physical model 
While the plane arch model was very simple and efficient for basic investigations and examinations of 
analysis methods, it was found to be highly unstable, making it difficult to consider its application to 
real buildings in the future. Therefore, we devised a more stable membrane-tensegrity composite 
structure with Y-shaped compression members. Fig. 8(a) shows the photos of the physical model. This 
model is the YC model. To facilitate the examination of modeling methods of the membrane material 
and the understanding of mechanical properties, we created a large model as simple as possible. The 
arrangement pattern of the compression members was determined by placing equilateral triangles on the 
plane, as shown in Fig. 8(b). We inserted the Y-shaped compression members bigger than the triangles 
on the cutting diagram (Fig. 8(c)), and introduced tension into the membrane material by pulling the 
three points marked with black circles on the cutting diagram to the center and assembled the model. 
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Figure 8: Physical model and creating method of YC model. 

4.2. Replacement method of membrane material 
For the YC model, we performed form-finding by applying the analysis method from Ch. 2 and 
comparing the results with the real behavior. While we cannot directly apply the replacement method of 
membrane material from Sec. 2.2 to the YC model, we observed that when only one side of the 
equilateral triangle on the cutting diagram is displayed, it matches the pattern of compression members 
in the plane arch model, as shown in Fig. 9. Therefore, by connecting EMEs using the same method as 
the plane arch model and performing the replacement method for all three sides, we could replace the 
membrane material with EMEs, as shown in the figure. Although overlapping EMEs occur, we treated 
them as a single element, and we performed the replacement method considering the intersection of 
EMEs. Additionally, to simplify calculations, we replaced the Y-shaped compression members with 
equilateral triangles for form-finding. 

We obtained the load-strain relationship equations for the EMEs using the biaxial tensile test described 
in Sec. 2.3. We performed form-finding using the dynamic relaxation method [7] and compared the 
results of form-finding with the real behavior. 
 

 

Figure 9: Replacement method of membrane material with EMEs. 



Proceedings of the IASS Symposium 2024 
Redefining the Art of Structural Design 

 

 

 8 

 

4.3. Biaxial tensile test 
To determine the load-strain relationship of EMEs for the YC model, we also conducted biaxial tensile 
tests aligned with the direction of the EMEs. However, due to the physical model’s fixture having a 
diameter of 50 mm in the adhesive area, it was difficult to perform tensile tests on test pieces made to 
match the diameter of the adhesive area. Therefore, based on the results from Sec. 2.3, we tried to 
conduct biaxial tensile tests using test pieces glued with 10 mm diameter fixtures, multiply the load of 
the test results by five, and determine the load-strain relationship for the EMEs of the YC model. 

In the YC model, there are four directions for the EMEs: A is at 0 degrees (in the warp direction), B at 
30 degrees, C at 60 degrees, and D at 90 degrees (in the weft direction). Fig. 10 shows the results of the 
biaxial tensile tests. Since the diameter of the physical model’s joint adhesive area is five times that of 
the diameter of the tensile test fixture, we can estimate the load-strain relationships of the EMEs by 
multiplying tensile test results five times. Eq. (5)-(8) are the load-strain relationship equations multiplied 
by five, and we used these equations for form-finding. 
 

 𝑆𝑆A2(𝜀𝜀) = 4.3𝜀𝜀5 + 15.2𝜀𝜀4 − 28.1𝜀𝜀3 + 43.6𝜀𝜀2 + 17.9𝜀𝜀     [N] (5) 

 𝑆𝑆B2(𝜀𝜀) = 9.8𝜀𝜀5 − 15.6𝜀𝜀4 + 31.6𝜀𝜀3 + 15.2𝜀𝜀2 + 20.2𝜀𝜀    [N] (6) 

 𝑆𝑆C2(𝜀𝜀) = −78.9𝜀𝜀5 + 317.0𝜀𝜀4 − 284.1𝜀𝜀3 + 133.6𝜀𝜀2 + 3.3𝜀𝜀     [N] (7) 

 𝑆𝑆D2(𝜀𝜀) = 93.8𝜀𝜀5 + 61.6𝜀𝜀4 − 155.4𝜀𝜀3 + 124.3𝜀𝜀2 − 1.9𝜀𝜀     [N] (8) 
 

 

Figure 10: Biaxial tensile test results of YC model. 

5. Comparison of real phenomenon with analysis results of YC model 
We compared the measurement result of the equilibrium shape immediately after model fabrication with 
the form-finding results. For the self-weight, the weight of the compression members was evenly input 
to the nodes at the ends of the compression elements, and the weight of the membrane material was 
distributed to all nodes by dividing the membrane material as described below (Fig. 11(d)). Fig. 11(a) 
compares the measurement results with the analysis results that show excellent agreement in maximum 
height. Thus, it is evident that the proposed analysis method in this study allows for the accurate 
determination of equilibrium shape for membrane-tensegrity composite structures with Y-shaped 
compression members as well. 

We conducted an eigenvalue analysis considering geometric stiffness using the stiffness of the EMEs in 
the equilibrium state and the initial forces acting on each member, obtained from the form-finding. To 
create a mass matrix, we divided the cutting diagram by the Voronoi partitioning method using the 
intersections of the EMEs as shown in Fig. 11(d), calculated the area of membrane material that each 
node covers, assumed mass concentration at the nodes, and set the nodal masses. Fig. 11(b) describes 
the analysis results (mode-1.) The natural period was 0.60 seconds. Furthermore, we subjected the 
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physical model to instantaneous acceleration, recorded on video, and measured the natural period of the 
physical model. Fig. 11(c) is a photo when we are shaking the physical model to induce deformation 
corresponding to mode-1. We measured the natural period on the video when the oscillations were 
minimized. As a result of the measurement, the natural period of the physical model was approximately 
0.56 seconds. We found that the measurement result aligns very closely with the eigenvalue analysis 
results. Therefore, we confirmed that the method proposed in this study can also accurately grasp the 
equilibrium shape and behavior under external forces for the YC model. 
 

 

Figure 11: Comparison of the analysis results with the real phenonenon. 

6. Conclusion 
As a result of examining analysis methods of the membrane-tensegrity composite structures, we found 
that we could accurately grasp the equilibrium shape and overall stiffness of the plane arch model by 
replacing membrane materials with EMEs, conducting tensile tests according to the replacement method 
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of membrane material and performing form-finding using the dynamic relaxation method. We also found 
that it is necessary to replace the membrane material considering the intersection of EMEs and determine 
the load-strain relationship of the EMEs through biaxial tensile tests. Furthermore, from the examination 
results aimed at application to buildings, we observed the possibility that we can accurately grasp the 
equilibrium shape and overall stiffness of membrane-tensegrity composite structures with Y-shaped 
compression members by applying the analysis method proposed in this study. 

Going forward, it is necessary to conduct mock-ups of scaled-up models and to examine methods of 
introducing tension into the membrane materials for application to real buildings. Additionally, to 
improve the accuracy of the analysis results, it is also necessary to consider the value of setting the initial 
tension introduced in the direction orthogonal to the axis of EMEs in biaxial tensile tests. 
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