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Abstract

The article introduces an innovative form-finding approach for shell structures utilizing polynomial
equations and their associated curves. This methodology, driven by four equations and nine coefficients,
enables the versatile generation of diverse shell forms. Furthermore, the integration of an Artificial Neu-
ral Network (AN N) is proposed to represent parametric Finite Element (FE) software analysis, with the
coefficients serving as parameters. The article illustrates various geometries generated through this ap-
proach, providing comprehensive insights into the underlying equations and coefficients. In a subsequent
phase, a lookup table for the AN N is constructed, involving the generation and analysis of 20 shells
with adjustments to three coefficients. The calculated eccentricity, functioning as the AN N output, un-
derscores the tool’s high accuracy. The article concludes by emphasizing the potential of the AN N tool,
highlighting its ability to independently design optimal forms when interfaced with the proposed shell
generator approach, incorporating geometric adjustments based on the introduced coefficients.
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1. State of the Art:

Throughout history, shell designers have applied optimization principles, initially using physical sag
models pioneered by Galileo Galilei and refined by Heinz Isler. This approach found broad application,
notably in Spain by Gaudi and across Switzerland, France, and Germany by Isler [1], [2]. In recent
decades, advancements in software and computational techniques such as dynamic relaxation, the force
density method, and best drift network analysis have enhanced precision in achieving optimal forms.
Engineers have also developed techniques, aided by artificial intelligence, for optimizing structural ele-
ments such as beam design and shape search [3]. Moreover, sophisticated methods address challenges
like geometric noise arising from optimization algorithm randomization [5].

However, each approach has its challenges and may not be universally applicable. Contemporary meth-
ods also have drawbacks, such as disregarding horizontal loads or requiring finite element analysis post-
form finding, potentially leading to manual repetition for sub-optimal performance. Even after address-
ing issues like geometric noise, utilizing optimization algorithms for shaping shells requires numerous
shell analyses, incurring significant computational expenses, and prompting the need for streamlined
methods. In this context, a straightforward concept has been put forth, which segments a shell into
distinct and manageable curves and seeks to determine the shell shape by these individual arcs and cur-
vatures. A curve is a one-dimensional entity that can be straight, like a line, or possess curvature. Curves
existing in two-dimensional space are referred to as plane curves, while those in three-dimensional space
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are termed space curves. In topology, a curve is delineated by a function mapping an interval of real
numbers to another space. Differential geometry employs a similar definition but requires the defining
function to be differentiable. Algebraic geometry delves into the study of algebraic curves, characterized
as algebraic varieties of dimension one [6]. In contrast, the location and distribution of them through the
length of each other can form the shell and surfaces [6]. A surface constitutes a two-dimensional entity,
exemplified by shapes like a sphere or parabolic. In the realms of differential geometry and topology,
surfaces are characterized by two-dimensional *patches’ (or neighborhoods) constructed via diffeomor-
phism or homeomorphisms, respectively. Within the domain of algebraic geometry, surfaces find their
description in terms of polynomial equations, which concludes that the polynomial curves can be the
roots and origins for finding the forms of the shells.

The term “Machine Learning (ML)” was coined by Arthur Samuel in the 1950s when he developed a
checkers-playing program capable of independent learning [7]. Thanks to advancements in computer
hardware and novel ML techniques, the field has achieved remarkable success in diverse areas such
as image recognition [8], speech recognition, medical prediction, and recommendation systems [9].
ML excels at discerning and reconstructing complex internal relationships between input and output
variables from extensive datasets. Consequently, ML can be applied to unveil correlations between
a structure’s shape and performance, making optimizing the structure’s shape a straightforward task
once these correlations are established. This concept has led researchers to employ ML in various
optimization challenges across physical systems. For instance, neural network (NN) and convolutional
neural network (CNN) models have been used for the inverse design of Kirigami, resulting in optimal
designs that maximize elastic stretch-ability with minimal training data [10]. Additionally, compared
to Fuzzy Logic, artificial neural networks (AN Ns) have demonstrated their capabilities in the standard
calculation of concrete beams [11].

Bayesian machine learning techniques have enabled the design and optimization of super-compressible
meta-materials, transforming brittle polymers into lightweight and recoverable materials. Moreover, hi-
erarchical composites, composed of stiff and soft materials, have been designed using neural networks,
resulting in optimized patterns that significantly enhance both strength and toughness [12]. These studies
highlight the effectiveness of ML in solving inverse problems and engineering structures with optimized
performance. However, in the domain of beam optimization, existing research has predominantly fo-
cused on optimizing parameters that define specific shapes or profiles rather than thoroughly exploring
the entire design space [13]. Similarly, ML has been utilized in designing curved beams with varying
thickness distributions and optimizing three mechanical objectives.

2. Poly Nominal Forms and AN N Analyzing Approach

The study aims to define shell geometries para-metrically using polynomial curves and propose a straight-
forward method for developing these forms. Simple shell geometries were generated based on limited
parameters and analyzed using SAP2000 to create a lookup table of geometrical parameters and forces.
A neural network was then used to interpret this data for continuous form evaluation. Additionally,
another mathematical approach was discussed in the final section as an outlook.

2.1. Definition of the Shell Geometries

Previous studies on remodeling Isler shells [2] have shown that shell forms can be developed using a
limited number of arches. By optimizing the geometries of these arches based on the requirements of
each part of the shell, an optimal shell form can be achieved [6]. However, existing approaches lack
adjust-ability in the form of selected arches and shells, despite variations in arch geometries and height-
to-span ratios. Therefore, this study proposes a method for para-metrically developing forms using
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Back-bone:

1).Y () = ay.2% + by.7; 2).Z(z) = a..a® + b..x + cz;

Side-lines:

x €[l,..n]
x € [1,..n]
3).9(x) = as.z® + bs.z + Span;
x €[1,..n]
4).R(z) = ar.x? + br.x + Height;

n € [1,...,inf]

P,
Px(n,[1,2,3]) = [-S(2) + Xpn, Xn, X, + S(2)]
Pi(n,[1:3]) = [Pa(n, 1), Py(n, 1), Po(n, 1)]; Py(n,[1,2,3)) = [Y (), Y (@), Y (2));
Py(n,[1:3]) = [Pa(n,2), Py(n, 2), Po(n, 2)]; Pa(n,[1,2,3)) = [-R(), Z(z), ~ ()]
]

PB('”’-, [1 : 3]) = [Pz(nw 3)7P1/<”73)7Pz<n13) 5

Figure 1: Parabolic equations for defining main lines (X, Y, Z) and the edges of the forms (X, S, R)

simple polynomial equations. The Polynomial-Based Form-Finding (P B F') method uses four equations
and nine coefficients to define the entire shell geometry. These nine coefficients can be adjusted to
generate a wide range of shell forms. The PBF' can be easily calculated or coded on any platform;
in this study, MATLAB was used. The PBF' ultimately forms a range of arches, each based on three
points and the central curvature as the backbone of the structure, as shown in Fig.(T)).

Development of the backbone curves is based on a selection of the X coordinates (x € [1,...n]),
that by linspace in MATLAB for a desirable number of the arches (n) for any start and end points
can be selected. The start and end points should be selected based on where the shell should be
formed.

The first polynomial was used for the backbone curvature (red line in Fig.(T)) to convert the nodes
to the line in X, Y space. The Y () equations (1).Y (z) = a,.2? + b,.z) using two coefficients
(ay, by), forms the adjustable curvature.

Likewise, to convert the lines to 3D space Z(z) was independent from Y () and just based on the
initial x coordinates developed. This second equation (2).Z(x) = a,.x? + b,.x + cz), uses three
coefficients (a,, 2 + b,, +c,), while ¢, is assigned as a benchmark to start the Z coordinates, and
can be based on the general plan selected as a fixed factor, to reduced the number of coordinates
from 9 to 8.

After calculation of the backbone curvature and based on the support places, the form should
based on the cross line be found. On both sides of the backbone, these two lines demand an
equation calculating their distances to the backbone in the X and Y spaces. As the S equation
(3).8(x) = as.w?+bs.x + Span) displays this equation uses two coefficients and a fixed factor as
the span, coming from the general architectural desirable span/2 in the form (blue line in Fig.(T)).

Similarly, the heights of the side supporting blue lines were calculated by the last equation (4).R(z)
arx®+bpx+ H eight), in which (a,, b,) was the coefficient and H eight as the fixed number to
apply the general desirable height were selected.

After developing the R and S equations to have independent 3D forms of the side-lines, the nodes
must be merged. It was quickly managed by addition and subtraction with the corresponding
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a;|b.| ¢, |ay|by| ar |b.|Height|as | bs |Span a|b.| c. | ay |by|a,| b, |[Height| as |bs|Span
Shi{0|0]1]0[1] 0|0 0 010 5 |Shyz|-21(-4{100| 0 |50| 0 | O 0 2 |-4] 30
Sho| 00| 5]0[1| 010 0 (02| 0 5 |Shyg| 5 |-4/100| -5 |50] 0 | O 0 2 |-4] 30
Shz3|[0|0]5]|0[1] 0|0 0 01 5 |Shys| 5 |-4|100| -5 |50| 5 | -4 0 2 |-4] 30
Shy0.1]0] 0O |O]|1| O |0 0 00 5 |Shig/ 00| 51]-01]1]{0]|O0 0 0 (0] 5
Shs(0.1/0] 0 |O]|1] 0 |0 0 010 5 |Shyz| 00| 51(-02/3|0]0 0 00| 5
She [0.1|-2] 5 |0|1] 0 |0 0 00 5 |Shig| 00| 5|-1(10/0]O0 0 0 (0] 25
Sh7{0|0]5]0[1]{02/|0 0 010 5 |Sh19|0.2{0| 5 |-1(10/0 | O 0 0 (0] 25
Shg| 00| 5]0]|11]-03|2 0 00 5 |Shog|0.3]-1| 5 | -1 |10]0.2| -2 0 0 (0] 25
Shg [0.1|-2] 5 |0]41]-03|2 0 010 5 |Sho1]|0.3]-1| 5 | -1 |10]0.2| -2 0 02(1] 25
Shig|0.1{-2] 5 |0 |4 |-0.3]2 0 0] 0| 10 |Sho|0.3]-1| 5 | -1 |10]0.2| -2 0 0.2(-1] 2.5
Shy1]0.1{-2] 5 |0 |4|-0.3]2 0 10.3]-0.4| 10 |Sho3|0.6|-1| 5 | -1 [10]|0.2]-10f 3 -04|5| 5
Shia| -2 [-4/100{ 0 |50/ 0 |0 0 0] 0| 30 |Shos| 5|5| 5|5 |5|5]|5 5 5|51 5

Table 1: Selected coefficients for parametrically forming the shells

nodes in the backbone. To make the P(z,y, z) matrix for each n point, Fig.(1). The 9 x 9 matrix
can be reshaped to prepare the coordinates of three points in each arch to be connected to gather
(e.g. by spline).

The array of individual arches forms the parametric shells, which, through four equations and nine co-
efficients, can generate a wide range of adjustable shells. The coefficient equations can be increased or
reduced to cover various forms or simplify them. Table displays different selected coefficients,
gradually changed to demonstrate their influence on the forms. The geometries start with the simplest,
with the minimum essential parameters, and then the parameters are gradually adjusted, and the num-
ber of selected ones increases. In creating these geometries, the final P matrix, including the XY, Z
coordinates of three points for each arch, was transferred to Rhino3D. The dimensions of the matrix de-
pend on the selected number of arches (n), and increasing the complexity of the geometry makes higher
values of n more desirable. The minimum matrix size in these models was 3 x 30. In Rhino3D, spiles
connected the joints, and a surface was added.

Figure. (2)), displays the geometries with the corresponding coefficients in the Table. (2.1.). It can be
seen that all 'a’, group (a, ay, ar, as), cause the curvature in the lines, and if the amount of them is
equal to zero, the structure of the shell will be formed by lines, with specific angles. The ’a’, group
(b2, by, by, bs), defines the amount of these angles. If they are all zero, the forms are made by straight
lines. In a specific range, if the ‘0’ in each equation has a higher amount with different signs than ’'a’
(e.g. b:5anda : —0.2), the turning point can be formed in all directions. The selected equation type
was polynomial, chosen for its accessibility and ease of description. However, various types of two-
dimensional functions, such as analytical, harmonic, trigonometric, exponential, etc., can be utilized in
similar formats. Similarly, direct 3D functions can be employed. While using 3D functions may involve
fewer coefficients, generating a wide range of geometries while respecting architectural components and
limitations (e.g. heights and spans) is not always straightforward or feasible.

2.2. Neural Network for analyzing the forms:

One of the known issues in most developed form-finding approaches is the challenge of finding ap-
propriate forms and simultaneously analyzing them to calculate forces and eccentricity for identifying
optimum forms. Forms with low eccentricity are typically considered optimal. As described in the pre-
vious section, PBF' can generate a wide range of forms, necessitating an analysis method. A classic
solution is to write equilibrium equations, which have largely been replaced by Finite Element methods
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in subsequent steps. This requires an interface between the coding platform (e.g., MATLAB) and struc-
tural software (e.g., SAP2000) to enable real-time analysis [7]. Additionally, the potential of machine
learning techniques, such as Fuzzy systems [14] or Neural Networks, can be explored as alternatives
to traditional structural software. Neural Networks were implemented using MATLAB. The Network

Figure 2: Some of the generated force based on the poly-nominal curves regarding the selected coeffi-
cients, Table. (2.T))
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Figure 3: Possible geometries by PBF

configuration involved selecting activation functions, including Sigmoid (’sigmoid’) and Hyperbolic
tangent Sigmoid ("tansig’), along with the Linear function (’purelin’) for input transformation. These
functions, along with inputs, targets, and the number of hidden layers (NHL), were assigned to the
Network using the *new f f° command.

Furthermore, procedures were implemented to remove rows with constant values (’removeconstantrows’)
and mapping rows with minimum and maximum values ("mapminmaz’). Random data division and
sample selection ("dividerand’ and *sample’) were employed, allocating 75% of the data for training
and an equal percentage for validation and testing of the Network ((25%)). To facilitate the training
process, the * Levenberg — Marquardt’ (Ctrainlm’) algorithm and Mean Squared Error ("mse’) were
designated as the Network’s performance functions.

To utilize the Neural Network (NN), a lookup table containing data about the parametric shell ge-
ometries and their corresponding analysis results must be prepared for interpretation. Since the NN
is intended to represent the Finite Element (FE) software for analyzing the structures and calculating
the eccentricity, the lookup table should include the analysis results of the shells as well. To prepare
the lookup table, 20 parametric geometries were generated by selecting and adjusting three of all the
coefficients (a., ay, &b.), as shown in Fig.(Ef]). The P matrix, including the z, y, z data, was exported to
SAP2000, and each section was analyzed accordingly. The forces, including bending and axial forces in
each section, were calculated. For the analysis output, the maximum eccentricity (abs(bending/Axial))
along with its standard deviation was selected. The coefficients a., b, &a, were varied with equal steps
from zero to 0.3, —2, —0.2 respectively, as shown in Table (2)). If the number of coefficients increases
significantly, the evaluation of higher shells and more analysis output would be necessary. However,
since the aim is to propose a new approach, a limited number of shells were analyzed to demonstrate the
feasibility of the method.

Table displays the results of the maximum bending (M) and shear (V') divided by axial load, along
with the eccentricity (F..) and the standard deviation (Std) of them in all arches of each shell. These
results are based on the variations of a.,b.& a,. The table serves as an outlook table and will be
interpreted by the Artificial Neural Network (AN N).

Figure (3)) illustrates some of the results of the Artificial Neural Network (AN N) for interpreting the
lookup table based on the analysis results of 20 shells in SAP2000. The selected coefficients are shown,
and those not displayed are assumed to be zero. The comparison between the analysis results and the
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Figure 4: SAP 1-20 (Models: 1,8,12,16,20)

AN N’s diagrams demonstrates the high capacity of the AN N in representing the Finite Element (FE)
software. This is evident in both the regression diagrams and the overlaying of the analysis results.
However, there may be discrepancies in the currency between the shear and bending diagrams, as well
as between the deviations and maximum forces. It’s important to note that despite being coded together,
each output has an individual operation in the AN N. Since the complexity of the data varies and the
AN N is a powerful tool for any type of regression, selecting a high number of hidden layers for simple
operations may lead to over-fitting. Increasing the number of shell evaluations and the size of the lookup
table, along with individual adjustments, can improve accuracy.

In conclusion, the integration of an artificial neural network (AN N) with the Polynomial Based Form-

- 1123456 /|7 8|9 1011|1213 |14 |15 |16 |17 18|19 20
E..M|2.96|2.96|3.26|3.58|3.90(4.21|4.21|5.03|5.03|5.25|7.34|9.78|8.01|5.33|5.36|5.36|5.47|5.50|5.57|6.05
E..V|147|1.47|1.56/1.65|1.73|1.81|1.81|1.95/1.95/1.97(2.82|3.45|2.75|1.84|1.74|1.74|1.68|1.65|1.63|3.49
Std M|1.08{1.08|1.12|1.16{1.20{1.24|1.24|1.34|1.34|1.36/1.47|1.67|1.55|1.41|1.37|1.37|1.35|1.34{1.32|1.55
Std V |0.65]0.65|0.67|0.680.70{0.71|0.71|0.74|0.74|0.74|0.7810.81|0.77|0.73|0.71|0.71|0.69|0.68|0.66|0.84
Table 2: The maximum bending ()) and shear (V') divided by axial load along with the eccentricity

(E¢c) and the standard deviation (Std)
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Figure 5: The performance of the AN IV in comparison to the analyzing data (Look-up table) and training
regression of the maximum forces
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Finding (P B F’) approach enables the analysis of parametric shells generated by P B F'. The key achieve-
ment of this integration is the development of an independent tool that can form and analyze parametric
shells in a systematic m AN Ner. With sufficient shell analysis, this tool allows operators to manipulate
the geometry and observe the resulting eccentricity (E..), aiding in the identification of coefficients that
produce architecturally desirable shapes with minimal eccentricity, thus achieving an optimum form.
The AN N serves to convert discrete analysis results from a limited number of shells into a continu-
ous area, allowing for the exploration of unanalyzed results through manipulation of PBF' coefficients.
Evaluating a wide range of shells and saving the data from both PBF and AN N as two capable tools
can lead to the full development of a new tool (PBF A), addressing the complexity of form-finding
and overcoming any experienced issues. ANNs as operators can also be interfaced to an optimization
algorithm on the same platform (such as MATALB). Then, the optimizer can find the optimal form by
adjusting the defined polynomial parameters.

3. Principles of a form finding approach (Out-Look):

This section proposes an idea for further study on determining the form of a shell. The main question
raised is: Can the force in shells be considered analogous to the flux in a surface? Before delving into
this concept, let’s define the general function of a surface in 3D space.

4D — f: Ax® + By 4+ C2° + Dw? + Ex’yzw + Fry’zw + Gryz*w + Hryzw? + Iz?yzw (1)

+Jzyz + Kzyw + Lyzw + Mwyx + Nxy + Ozz + Pxw + Qyz +
Ryw+ Szw+Tx+Uy+Vz4+Viw+V2=0

Assuming the material as the constant property in the shells (e.g. concrete), the shell’s geometries can
be defined as the 3D surface.

3D — f:Ax® + By* + C2* + Dy + Exz+ Fyz + Ge + Hy+ 12+ J =0 )

Z(wyy) = —(2° + ) 3)

3.1. Form Finding as a Math problem

To efficiently find the form of shells, a mathematical approach can be employed. Rather than traditional
methods, a plan from the R? space must be mapped to the R> space using a well-defined function to
achieve an optimal form. This function can be defined in various spaces, such as Euclidean or Topolog-
ical. It must convert the nodes of the initial shape (from (x, y) to (z,y, z)) into the optimal form.

2 3
R!ER; (4)

It would be beneficial to employ flux definitions applied in vector space within suitable analytical as-
sumptions on a manifold topological space. This approach enhances properties crucial for mappings,
such as form and dimension, and allows for the addition of new dimensions like nodal angle and their
relationships. Principal topological properties like connectedness must be considered, along with other
properties such as compactness, matrix capability, and boundary properties. The function and its in-
verse should ensure continuity to prevent separation and jumps, particularly useful when architects seek
separated shells adjacent to each other, requiring asymptotic analysis. Additionally, the function should
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be differentiable, allowing for partial derivations, which provide effective properties over a surface in
vector spaces (shared definitions). For instance, considering the amount of inertia and its mapping on
Earth from each point could be insightful. Understanding the relationship between strain energy, stress,
and work, mathematically calculating the work done by load vectors along a curvature or shell, and
considering the energy in the gravity direction towards shell nodes could inform stress calculations un-
der pressure. This approach, leveraging conservative gravity performance, could potentially maximize
stress based on the stated goa]ﬂ

(e y) — fffRZQ(ﬂ(f(mvyaz);tf(«T,y,Z)d'U
Fi(r,y,2) = (@) = my (5, 9) (5)

It is internally related to shea but this time, the question is about the amount of in-plane load within a
shell section. This can be calculated using the Gauss-Divergence and Stokes theorems.

Share: [ [ o8y 2)ut1(09,2) % V(w.9.2) x (o, 2)do ©
1)

The Share definition is used in temperature transmission in shells with the same in-plane type of load.
It aims to define the function that can map to a new shell shape with the maximum defined Share type,
where:

R=CX(r,X,m&i €I, ={0,1,2,....,n)},a = (a1,a2, a3, ..., 0ty @)

Where, n: vector perpendicular to the surface, V': speed function for passing the area, F': load vector, 7:
direction function, p: mass function, f: shape function, ¢;: thickness function, m ¢: mapped function.

4. Conclusion:

The article introduces a novel form-finding approach for shaping shells by integrating curves derived
from polynomial equations. This method utilizes four equations and nine coefficients to generate di-
verse shell forms. Additionally, an Artificial Neural Network (AN V) is implemented to represent the
analysis within Finite Element (FE) software. After explaining the equations and coefficients, various
geometries produced using this approach are presented. However, the demonstrated shells represent
only a limited range of what this approach can produce; the Polynomial Based Form-Finding (PBF’)
method can generate a wider variety of shells. Furthermore, employing other types of functions or series
instead of polynomials in a similar approach could lead to an even broader range of shells. To analyze
the parametric shells, a creative approach through AN N was utilized, and the coding features in MAT-
LAB were described. Since approaches like Fuzzy Logic, AN N, and Adaptive Neuro-Fuzzy Inference
System (ANFIS) require initial data about the parameters and calculation output of the corresponding
problem, a comprehensive database should be built.

To prepare the Look-up table for export to the AN N, 20 shells were generated and analyzed by ad-
justing three coefficients. The resulting eccentricity, serving as the output of the AN N, demonstrated
remarkably high accuracy. While this initial study utilized a small dataset, practical applications will
necessitate a larger number of shells and a correspondingly expanded Look-up table, along with fine-
tuning of the AN N. MATLAB was employed for code development, but exploring other programming
languages like Cy4 and developing independent software could be considered for future steps. The

'The gravity performance is a conservative function.
>The amount of force passing through a unit area.
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interface of PBF and AN N represents a comprehensive approach (P BF A), showcasing the effective-
ness of this tool in independently designing optimal forms, particularly when coupled with the proposed
shell generation approach.
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