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Abstract 
A bending-active gridshell is a curved surface elastically deformed from an initial flat grid composed of 
bending flexible members. The constructability of a gridshell is linked to both its grid pattern and slender 
beam profiles. A grid pattern composed of piecewise linear curves is difficult to be fabricated as 
conventional scissors’ bending-active structures due to many additional parts. We introduce a bending-
active gridshell exhibiting anisotropic bending deformation modes in the out-of-plane direction. This 
deformation behavior, referred to as mode separation, improves the constructability of a gridshell. The 
grid pattern is specifically designed based on a tessellation of rotating quadrilaterals. An initial flat grid 
is fabricated as compliant mechanism. To measure the out-of-plane deformability of the present gridshell, 
we compare the eigenvalues associated with elastic deformation modes. Several examples demonstrate 
mode separation between the out-of-plane deformation modes. By carrying out large-deformation 
analysis, the deformed surface with the ideal mode is investigated. Moreover, by combining rotating 
quadrilaterals and diagonal lines, the generated curved surfaces exhibit more complex shapes than those 
with uniform rotating quadrilaterals. Gridshells fabricated by 3D printer are shown for validating the 
results of numerical simulation. Our gridshell may provide a new insight into the design of grid pattern 
for generating variable shapes of bending-active gridshells with ideal deformation behaviors. 

Keywords: bending-active gridshell, form-finding, grid pattern design, compliant mechanism, rotating quadrilateral, mode 
separation, eigenvalue analysis, large-deformation analysis  

 

Figure 1: Design scheme of our bending-active gridshell based on rotating quadrilaterals. 

1. Introduction 
A bending-active gridshell is a curved surface deformed elastically from an initial flat grid composed of 
bending flexible beams. There has been a growing interest in rationalizing the constructability and 
deformability of a gridshell by focusing on its grid pattern and profile of beams [1-5]. Deformable 
structures combined with bending flexible beams and scissor’s transformation improve the 
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constructability. The profile of a beam restricts its deformation degrees-of-freedom (DOF): twisting and 
bending deformations for in-plane and out-of-plane directions. Schikore et al. [1] investigates the 
relationships between the profile of beams and three classes of bending-active gridshells: double ruled, 
geodesic, and asymptotic. Nishimoto and Tachi [2] propose a shape design method of geodesic gridshell 
with a rhombic grid pattern. Schling et al. [3] and Mesnil et al. [4] show hybrid gridshells combined 
with asymptotic and geodesic ones. Their proposed gridshells are deformed easily into desirable curved 
surfaces. 

Compliant mechanism is an alternative manufacturing technique to scissors’ mechanism. By utilizing 
elastic deformations of a structure, compliant mechanism performs like a conventional mechanism 
composed of multiple rigid parts connected by hinges [6]. Using compliant mechanism for fabricating 
an initial flat grid, we can avoid the difficulties of a hinge: (i) losing the precise motion due to friction, 
(ii) increasing the total weight of a gridshell by additional parts, and (iii) assembling many beams and 
hinges manually. Liu et al. [5] propose deployable strip structures composed of thin beams fabricated 
as compliant mechanism. Because of the specific grid pattern composed of beams with a uniform length, 
their gridshells can be transformed from a fully compact state to a deployed state.  

A geometrical configuration of rotating quadrilaterals is illustrated in the left figure of Fig. 1. A 
tessellation of rotating quadrilaterals can be transformed as a mechanism with 1 DOF [7]. Additionally, 
the in-plane mechanical properties of flat grids designed as the edges of rotating quadrilaterals has also 
been investigated [8, 9]. To the best of our knowledge, the out-of-plane deformation behavior of this 
class of flat grids has been still unveiled. By utilizing a geometrical configuration of rotating 
quadrilaterals as a grid pattern, it would be a new class of bending-active gridshells with piecewise linear 
curves, as shown in the center and right figures of Fig. 1. 

In this paper, we propose a bending-active gridshell with a grid pattern based on a tessellation of rotating 
quadrilaterals. Figure 1 illustrates a design scheme of our gridshell. The geometrical configuration of an 
initial flat grid is designed as the edges of rotating quadrilaterals. This flat grid is fabricated 
monolithically like a compliant mechanism. By performing eigenvalue analysis, we investigate whether 
our gridshells exhibit mode separation [10], which is an ideal deformation behavior for the construction 
phase. Additionally, the deformed surface of a gridshell is generated by performing large-deformation 
analysis. Several models can deform into a curved surface close to those of the lowest out-of-plane 
deformation mode. To generate a more complex curved surface, we introduce a hybrid grid pattern 
combined with rotating quadrilateral units and their diagonal units. Finally, the deformed surfaces of 
numerical and physical models are compared.  

 

  
(a)               (b)     

  
(c)               (d)     

Figure 2: Geometrical configuration of rotating quadrilaterals; (a) RSUs with parameter T (0 ≤ T ≤ 1) and angle 
α, (b) variations of 6× 6 array of RSUs, (c) RPUs with parameter T (0 ≤ T ≤ 1) and angle α, (d) variations of 6×

6 array of RPUs. 
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2. Grid pattern based on rotating quadrilaterals 
As illustrated in Fig 2, we employ a rotating square unit (RSU) [11] and rotating parallelogram unit 
(RPU) [12, 13] as the grid pattern. A grid pattern composed of RSUs and RPUs is tessellated by uniform 
quadrilaterals with reflection symmetry with respect to the dotted grid illustrated in Figs. 2(a) and (c). 
The geometrical configuration of a grid pattern is tuned by moving four vertices of a RSU and RPU 
following the arrows along the dotted grid.  

2.1. Rotating square unit 
As shown in Fig. 2 (a), design parameter T (0 ≤ T ≤ 1) determines the position of a vertex on the dotted 
grid. In the range of 0 < T < 1, the grid pattern is tessellated with squares and rhombuses. When T ∈{0, 
0.5, 1}, the grid pattern is tessellated with uniform squares, as displayed in Fig. 2(b). The topology of a 
grid pattern with Τ = 0 or 1 is different from those with Τ > 0. The angle α (deg), as illustrated in Fig. 
2(a), is calculated as 

 
1802arctan    when 0 1

1
0                                    when 1

T T
T

T
α π

  × ≤ <  = − 
 =

 (1) 

2.2. Rotating parallelogram unit 
As illustrated in Fig. 2(c), the position of vertices A and A’ is determined as 0.5T, (0 ≤ T ≤ 1), whereas 
that of B and B’ as 0.5(1+T). The topology of a grid pattern with T > 0 is different from that with T = 0, 
as depicted in Fig. 2(d). The angle α in the grid pattern with RPUs is also computed by Eq. (1). 

3. Elastic deformation modes 
An initial flat grid of our gridshell is designed as the edges extracted from an array of RSUs and RPUs. 
Assuming a compliant mechanism, connections between beams are monolithic without additional hinges. 
The cross-section of a thin beam has a rectangle with width tb and height th. Following Ref. [14], 
eigenvalue analysis is performed for investigating the stiffness for out-of-plane deformation modes of 
an initial flat grid. 

3.1. Eigenvalue analysis 
Here, we consider an eigenvalue problem with free boundary condition. We focus on the 7th eigenmode 
and higher, which are called elastic modes. The eigenvalue of an elastic mode is non-zero and the 
deformed shape is in a stressed state. By contrast, rigid body modes, from the 1st to 6th eigenmodes, are 
out of scope of this study, because their eigenvalues are zero and the deformed shape is in an unstressed 
state. 

The eigenvalue problem for an initial flat grid is written as 

 K Mi i iλ=v v  (2) 

where K and M are denoted as stiffness and mass matrices, respectively. λi and vi represent the ith 
eigenvalue and eigenvector, respectively. Because the components of matrix M are constant, λi is 
proportional to the components of matrix K. This means that an initial flat grid can be easily deformed 
into the curved surface of an elastic mode with a smaller λi than that with a larger λi. 

In following examples, Abaqus Ver. 2022 [15] is used for carrying out eigenvalue analysis. The 
eigenvalue problem is solved by Lanczos method. We use glass fiber reinforced polymer as material 
with Young’s modulus 25 GPa and Poisson’s ratio 0.221. To reduce the deformation DOFs of an initial 
flat grid, the profile of a beam is set as th = 0.30 (m) and tb = 0.01 (m), which restricts the out-of-plane 
bending deformation of the beam. 
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3.2. Out-of-plane deformation modes 

  
(a)      (b) 

  
(c)      (d) 

  
(e)      (f) 

Figure 3: Comparison of eigenvalues and their corresponding deformed shapes for out-of-plane deformation 
modes of an initial flat grid; (a)10× 10 array of RSUs in a rectangular boundary, (b) 10× 10 array of RPUs in a 
rectangular boundary, (c) 60 RSUs in a rhombic boundary, (d) 60 RPUs in a rhombic boundary, (e) 12× 4 array 

of RSUs embedded in an annulus boundary, (f) 96 RSUs embedded in a hexagonal boundary. 

Figure 3 compares the deformed shapes and eigenvalues for out-of-plane deformation modes of an initial 
flat grid. The models shown in Figs. 3(a)–(d) are designed with the specified angle α = {0 ° , 30 ° , 60 ° , 
90 ° }. In contrast, the models illustrated in Figs. 3(e) and (f) are designed by specifying parameter T = 
{0.0, 0.17, 0.34, 0.50}. In the upper figures, the lowest and second lowest out-of-plane deformation 
modes are illustrated. The contour of a curved surface represents a distribution of z-directional 
displacement. In the lower figures, an example of the grid pattern and eigenvalues of elastic modes 
including both out-of-plane and in-plane deformation modes. 
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Figures 3(a) and (b) illustrate the models with 10 × 10 array of RSUs and RPUs, respectively, in a 
rectangular boundary with 10× 10 (m). The results shown in Fig. 3(a) indicate that the lowest out-of-
plane deformation modes are the 7th eigenmode for all parameters. The deformed shape of the 7th mode 
of the model specified with α = 0 °  is a twisted surface. In contrast, those with α = 30 ° , 60 ° , and 90 °  
are deformed into saddle surfaces. The difference between them is caused by different topologies of 
their grid patterns, as explained in Sec. 2.1. Also, the results of RPUs are almost the same as those of 
RSUs. 

As shown in Figs. 3(c) and (d), the models with 60 RSUs and RPUs, respectively, have a rhombic 
boundary with 10× 10 (m). For both grid types, the deformed shapes of the lowest out-of-plane modes 
of the models with α = 0 °  are saddle surfaces, while the others are twisted surfaces. 

Figure 3(e) compares the models with 12 × 4 array of RSUs embedded into the annulus with inner 
diameter 1.0m and outer diameter 6.0m. The dotted grid is aligned in the circumferential and radial 
directions. The deformed shapes of the lowest out-of-plane mode are saddle and cone-like surfaces. A 
saddle surface is deformed from an initial flat grid with T = 0.0 or 0.17, whereas a cone-like surface is 
obtained from one with T = 0.34 or 0.50. 

As shown in Fig. 3(f), an initial flat grid with 96 RSUs is embedded into the hexagonal boundary with 
each side 5.0m. The dotted grid is designed by using Catmull-Clark subdivision. The deformed shapes 
of the lowest out-of-plane mode for the models with T = 0.17, 0.34, and 0.50 are saddle, whereas the 
deformed shape for the model with T = 0.0 is a twisted surface. 

Table 1: Eigenvalue ratio between the lowest and second lowest out-of-plane deformation modes. 
Figure Boundary shape Unit type α = 0 °  α = 30 °  α = 60 °  α = 90 °  

3(a) Rectangular RSU 941.49 41.871 134.58 183.61 
3(b) Rectangular RPU 1.5682 109.58 162.83 181.82 
3(c) Rhombic RSU 221.71 182.71 554.79 707.55 
3(d) Rhombic RPU 2.8364 390.04 618.69 109.05 

   T = 0.0 T = 0.17 T = 0.34 T = 0.50 
3(e) Annulus RSU 1.0348 1.1250 2.2143 23.890 
3(f) Hexagon RSU 6.3931 1.0471 2.5325 4.7604 

 

For measuring the constructability of our gridshell, we calculate an eigenvalue ratio between the lowest 
and second lowest out-of-plane modes for an initial flat grid. Table 1 shows eigenvalue ratios for the 
models as investigated in Fig. 3. For instance, these eigenvalues of the model with α = 0 °  as illustrated 
in Fig. 3(a) are λ7 = 2.5978 and λ21 = λ22 = 2445.8, respectively. The eigenvalue ratio is thus obtained 
as λ21 / λ7 = 941.49. This value indicates that the stiffness required to generate a curved surface of the 
second lowest out-of-plane mode is 941.49 times higher than that of the lowest one. The larger ratio 
achieves mode separation of an initial flat grid for out-of-plane deformations. 

For models corresponding to Figs. 3(a)–(d), an initial flat grid with RSUs in the rhombic boundary 
exhibits a larger eigenvalue ratio than one in the rectangular boundary. Also, the ratios of the initial flat 
grids with RPUs in the rhombic boundary are larger than those in the rectangular boundary, except the 
model with α = 90 ° . Regarding the results of models with α = 0 ° , the initial flat grids with RSUs 
demonstrate mode separation significantly. By contrast, those with RPUs do not exhibit mode separation 
clearly. These models are not easily deformed into out-of-plane deformation modes because the lowest 
out-of-plane modes are the 12th and 13th eigenmodes, whereas the 7th–11th eigenmodes are 
corresponding to in-plane deformation modes. 

In contrast, an initial flat grid embedded into an annulus and hexagonal boundary exhibits a small 
eigenvalue ratio, because these embedded grids have higher symmetric geometries than those in a 
rectangular and rhombic boundary. The ratios for the models with T = 0.0 and 0.17 of Fig. 3(e) and that 
with T = 0.17 of Fig. 3(f) are close to 1. This relatively small value indicates that these initial flat grids 
can hardly achieve mode separation for out-of-plane deformations. 
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(a)       (b) 

     
(c)       (d) 

 
(e) 

Figure 4: Initial flat grid and deformed surface under forced displacements in out-of-plane direction; (a) a saddle 
shape composed of 10× 10 array of RSUs with α = 60 °  in the rectangular boundary, (b) a twisted shape 

composed of 60 RPUs with α = 60 °  in the rhombic boundary, (c) a saddle shape composed of 12× 4 array of 
RSUs with T = 0.10 embedded in the annulus boundary, (d) a cone-like shape composed of 12× 4 array of RSUs 

with T = 0.40 embedded in the annulus boundary, (e) a saddle shape composed of 96 RSUs with T = 0.25 
embedded in the regular hexagon boundary, which is close to 1/8 regions of the Schwartz P surface surrounded 

by blue curves. 

4. Relationship between a grid pattern and deformed surface 
To validate the deformed shape of the lowest out-of-plane mode of the proposed initial flat grids, we 
investigate a relationship between a grid pattern and deformed surface. For large-deformation analysis 
considering geometrical nonlinearity, we carry out a quasistatic incremental path-following analysis. 
The loading parameter from 0.0 to 1.0 is linearly increased with the maximum increment 0.01.  

4.1. Grid pattern composed of RSUs and RPUs 
As shown in Fig. 4, let us consider five initial flat grids with pin-supports fixed in x, y, and z-directions 
at the center of a grid, represented as black circles. Forced displacements 20% of the span in y-direction, 
represented as orange arrows along to z-direction, are given at the boundaries.  

Figures 4(a)–(e) show five initial flat grids and their deformed surfaces composed of (i) RSUs with α = 
60 °  in a rectangular boundary with Lx × Ly = 10× 10 (m), (ii) RPUs with α = 60 °  in a rhombic boundary 
with Lx × Ly = 10× 10 (m), (iii) 12× 4 array of RSUs with T = 0.10 embedded into the annulus boundary 
with D = 6 (m) and d = 1 (m), (iv) 12× 4 array of RSUs with T = 0.40 embedded into the same annulus 
boundary as (iii), and (v) 96 RSUs with T = 0.25 embedded into the hexagonal boundary with 5m on 
each side and Ly = 5 3  (m). The contour on the deformed surface represents a distribution of z-
directional displacements.  

Deformed shapes of the initial flat grids in Fig. 4 are consistent with surface classes of the lowest out-
of-plane deformation modes illustrated in Fig. 3. As shown in Figs. 4(a) and (b), we obtain a saddle and 
twisted surface, respectively. For both cases, the distance between the highest and lowest positions of 
the deformed surface is larger than 3.5m, i.e., 35% of the sizes of an initial flat grid in x- and y-directions. 
Although we assign similar boundary conditions and forced displacements, the models of Figs. 4(c) and 
(d) are deformed into a saddle and cone-like shape, respectively. From the result of Fig. 4(e), an initial 
flat grid composed of RSUs embedded into the hexagonal boundary is deformed into a saddle shape 
close to 1/8 parts of the Schwartz P surface. 
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(a)      (b) 

  
(c)      (d) 

Figure 5: Hybrid grid pattern and deformed surfaces; (a) comparing deformed surfaces of RSUs and their 
diagonal units, (b) a curved surface composed of RSUs and their diagonal units in a rhombic boundary, (c) a 
curved surface composed of RPUs and their diagonal units in a tapered rectangular boundary, (d) a curved 

surface with a grid pattern where RSUs and their diagonal units are assigned alternately. 

4.2. Hybrid grid pattern 
In Secs. 3 and 4.1, rotating quadrilaterals are used for designing an initial flat grid for investigating the 
mechanical properties of our gridshells. In this section, we introduce a hybrid grid pattern combined 
with rotating quadrilateral units and their diagonal units. Figure 5(a) compares initial flat grids and 
deformed surfaces composed of RSUs and their diagonal units. A saddle and dome are obtained by 
deforming RSUs and their diagonal units, respectively, in the out-of-plane direction. By using both units 
for designing an initial flat grid, we therefore generate a more complex curved surface. 

Figures 5(b)–(d) show hybrid grid patterns and their deformed shapes with the contour representing the 
distribution of z-directional displacements. To generate a curved surface, we assign forced displacements 
0.2Ly and pin-supports fixed in x-, y-, and z-directions, represented as orange arrows and black nodes, 
respectively. As shown in Fig. 5(b), 30 RSUs and 30 their diagonal units are assigned to the initial flat 
grid in a rhombic boundary with Lx × Ly = 20× 10 (m). The deformed surface exhibits saddle and dome 
on RSUs and their diagonal units, respectively. Figure 5(c) shows the gridshell composed of RPUs and 
their diagonal units in a tapered rectangular boundary with Lx × Ly = 20× 15 (m). Saddle and dome are 
distributed alternately on their corresponding regions. Furthermore, we propose a hybrid grid pattern 
where RSUs and their diagonal units are assigned alternately in a rectangular boundary with Lx × Ly = 10
× 10 (m), as shown in Fig. 5(d). The deformed surface seems to be a combination of a saddle and twisted 
shape. 

4.3. Comparison of a curved surface obtained by large-deformation analysis and 3D printed model 
As displayed in Fig. 6, we compare the deformed shapes of numerical and physical models. These 
models are composed of (i) RSUs with α = 30 °  in a rectangular boundary with 15× 15 (cm) and (ii) 
RSUs and their diagonal units with α = 30 °  in rectangular boundary with 15× 15 (cm). Thermoplastic 
polyurethane (TPU95A, produced by eSUN) is used as material with Young’s modulus 35MPa, 
Poisson’s ratio 0.4, and density 1.21g/mm3. Physical models are fabricated by using Original Prusa MK4 
(produced by Prusa Research), which is based on the fused decomposition modelling. Two weights of 
0.15kg are given at the center nodes on two opposite boundaries. Physical models are suspended with a 
string at two center nodes. For numerical models based on large-deformation analysis, we assign 
downward point loads 1.47N and pin-supports to these corresponding nodes. 
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(a) 

  

   
(b) 

Figure 6: Comparing deformed shapes obtained by large-deformation analysis and 3D printed model; (a) 10× 10 
array of RSUs in a rectangular boundary, (b) 10× 10 array of RSUs and their diagonal units in a rectangular 

boundary. 

Figure 6 compares the curved surfaces obtained as numerical and physical models. The numerical model 
is shown in the top left figure of Figs. 6(a) and (b). The bottom left figure of Figs. 6(a) and (b) is the 
deformed surface of a physical model. For both cases in Figs. 6(a) and (b), the deformed surfaces of 
numerical and physical models are close. 

As illustrated in the right figures in Figs. 6(a) and (b), we measure the spans, indicated by red lines, 
between nodes at two corners of deformed numerical and physical models. The rises, highlighted by 
blue lines, are calculated based on the difference between lengths of red and blue lines. For the physical 
model of Fig. 6(a), the span and rise of a deformed surface are measured as 14.1cm and 2.86cm, 
respectively. Those of the model obtained by large-deformation analysis are computed as 14.2cm and 
3.12cm. In the bottom right figure in Fig. 6(b), the span and rise are measured as 11.9cm and 3.13cm, 
respectively. The corresponding distances of numerical models are 11.4cm and 3.82cm. The relative 
errors for Fig. 6(a) are approximately 0.71% for the span and 9.09% for the rise, whereas for Fig. 6(b), 
they are approximately 4.2% for the span and 22.05% for the rise. For both cases, the errors for the rise 
are larger than those for the span. 

5. Conclusions 
We proposed a bending-active gridshell with a grid pattern based on rotating quadrilaterals. An initial 
flat grid is composed of RSUs and RPUs. The geometrical configuration of an initial flat grid is adjusted 
by shape parameter. To restrict the deformation DOFs of an initial flat grid, a beam has a thin rectangular 
cross-section that allows in-plane bending and twisting deformations. Additionally, we utilize the 
eigenvalue ratio between the lowest and second lowest out-of-plane modes as an indicator for mode 
separation of an initial flat grid. Most of the models in a rectangular and rhombic boundary can produce 
significant mode separation. Moreover, we proposed a hybrid grid pattern for generating a more complex 
curved surface. By adjusting the arrangement of both quadrilateral and diagonal units, a curved surface 
has a more complex shape than that deformed from an initial flat grid composed of only RSUs and RPUs. 
We compared the deformed shapes of numerical and physical models. The span and rise of the numerical 
and physical models have slight differences. It has left room for improving the accuracy of the 
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measurement by employing digital tools such as 3D scanning and photogrammetry. However, the overall 
shapes are close for both cases. For large-scaled architectures, braces are incorporated to reinforce both 
in-plane and out-of-plane stiffness in the deployed state. This investigation will enhance our 
understanding of a gridshell with an ideal deformation behavior for its construction. 

References 
[1] J. Schikore, E. Schling, T. Oberbichler and A. M. Bauer, "Kinetics and design of semi-compliant 

grid mechanisms," In Proceedings of Advances in Architectural geometry 2021, pp. 108-129, 2021. 

[2] S. Nishimoto and T. Tachi, "Transformable surface mechanisms by assembly of geodesic grid 
mechanisms," In Proceedings of the Advances in Architectural Geometry 2023, pp. 221-234, 2023. 

[3] E. Schling, H. Wang, S. Hoyer and H. Pottmann, "Designing asymptotic geodesic hybrid gridshells," 
Computer-Aided Design, 152, 103378, 2022. 

[4] R. Mesnil and O. Baverel, "Pseudo-geodesic gridshells," Engineering Structures, 279, 115558, 
2023. 

[5] D. Liu, D. Pellis, YC. Chiang, F. Rist, J. Wallner and H. Pottmann, "Deployable strip structures," 
ACM Transactions on Graphics, vol. 42(4), no. 106, pp.1-16, 2023.  

[6] L. L. Howell, "Compliant Mechanisms," Wiley, 2001. 

[7] J. N. Grima, A. Alderson and K. E. Evans, "Auxetic behaviour from rotating rigid units," Physica 
Status Solidi (b), 242(3), pp. 561-575, 2005. 

[8] M. Chen, J. Huang, W. Jiang and M. Fu, "Elastic properties of lightweight rotating square 
structures," Materials Today Communications, vol. 33, 104256, 2022.  

[9] L. Mizzi and A. Spaggiari, "Lightweight mechanical metamaterials designed using hierarchical truss 
elements," Smart Materials and Structure, 29(10), 105036, 2020. 

[10] T. Tachi, "Introduction to structural origami," Journal of the International Association for Shell 
and Spatial Structures, vol. 60, no. 199, pp. 7-18, 2019. 

[11] J. N. Grima and K. E. Evans, "Auxetic behaviour from rotating squares," Journal of Materials 
Science Letters, 19, pp. 1563-1565, 2000. 

[12] D. Attard, E. Manicaro and J. N. Grima, "On the rotating rigid parallelograms and their potential 
for exhibiting auxetic behaviour," Physica Status Solidi (b), 246(9), pp. 2033-2044, 2009. 

[13] Y. Zheng, I. Niloy, P. Celli, I. Tobasco and P. Plucinsky, "Continuum field theory for the 
deformations of planar kirigami," Physical Review Letters, 128, 208003, 2022. 

[14] E. T. Filipov, T. Tachi and G. H. Paulino, "Origami tubes assembled into stiff, yet reconfigurable 
structures and metamaterials," Proceedings of the National Academy of Sciences, 112(40), pp. 
12321-12326, 2015. 

[15] Dassault Systems, "Abaqus 2022 User’s Manual," 2022.  




	IASS2024_Paper_sakai_04.pdf
	Designing an ideal deformation behavior of a bending-active gridshell based on rotating quadrilaterals
	Abstract
	1. Introduction
	2. Grid pattern based on rotating quadrilaterals
	2.1. Rotating square unit
	2.2. Rotating parallelogram unit

	3. Elastic deformation modes
	3.1. Eigenvalue analysis
	3.2. Out-of-plane deformation modes

	4. Relationship between a grid pattern and deformed surface
	4.1. Grid pattern composed of RSUs and RPUs
	4.2. Hybrid grid pattern
	4.3. Comparison of a curved surface obtained by large-deformation analysis and 3D printed model

	5. Conclusions
	References

	Copyright_Declaration_2024_sakai.pdf

