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Abstract 
In the field of lightweight free-form shell design, the optimization of thickness plays an important role 
in ensuring both light weight and adequate stiffness. For traditional construction methods, designing 
variable discrete shell thicknesses is a practical approach for successful implementation. To achieve this 
goal, a novel thickness optimization method for shells based on the multi-material bi-directional 
evolutionary structural optimization (BESO) method is proposed in this study. As a proof of concept, a 
shell pavilion prototype measuring approximately 12 m × 8 m × 5 m is designed. By comparing various 
free-form shell designs with different thickness distributions and considering factors such as the Young’s 
modulus and the number of materials, this study demonstrates the effectiveness of the proposed method 
in achieving lightweight design with adequate structural efficiency. The discrete thickness optimization 
for the shell case in this paper confirms the potential application of multi-material topology optimization 
methods in the lightweight design of shell structures. 

 

Keywords: Multi-material topology optimization, shell design, thickness optimization, lightweight design. 

1. Introduction 
Shell structure is an important form in in architectural design, offering the potential for expansive interior 
spaces, heightened clear heights, and reduced weight through thoughtful engineering[1–3]. The 
optimization of free-form shell structures is essential for enhancing structural efficiency, particularly 
through lightweight design, which minimizes the structure's self-weight without compromising its 
efficiency [4,5]. Optimization strategies typically center around geometry [6–9], topology [10–13], 
thickness [14,15], or integrated optimization [16–18]. While past research has predominantly 
emphasized continuous thickness optimization, such approaches have posed challenges in terms of 
constructability. 

This paper introduces a novel approach to optimize the thickness of free-form shell structures using 
multi-material topology optimization techniques. Building upon the bi-directional evolutionary 
structural optimization (BESO) method [19], our technique incorporates gradient distribution strategies 
for different materials, allowing for the distribution of high and low-performance materials gradients. 
Our preliminary research demonstrates the potential of the multi-material BESO method in designing 
high-performance building structures [20–22]. It effectively optimizes topology for multiple linear and 
nonlinear materials and has shown promising results in practical engineering structural design 
applications [23–25]. Leveraging multi-material BESO method, the paper focuses on optimizing the 
thickness of free-form shell structures. The topologically optimized shell structure features a limited 
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number of thickness variations, streamlining subsequent construction design and implementation 
processes. 

2. Multi-material topology optimization 

2.1 Problem statement 

The multi-material BESO method utilized in this study [26] is an extension algorithm based on the 
single-material BESO method. The various materials investigated in this study are all linear and isotropic, 
denoted as M1, M2, …, Mn, assuming these materials have the following Young’s moduli: E1, E2, ..., En 
(where E1 > E2 ꞏꞏꞏ > En). The topology optimization problem for structures composed of these multiple 
materials can be stated as: 

minimize: 𝐶 ൌ ଵ

ଶ
u𝑻Ku       (1a) 

subject to: 𝑉௝
∗ െ ∑ 𝑉௜

ே
௜ୀଵ 𝑥௜௝ െ ∑ 𝑉௜

∗௝ିଵ
௜ୀଵ ൌ 0    (1b) 

𝑥௜௝ ൌ 𝑥୫୧୬ or 1 (j = 1, 2, …, n-1)   (1c) 

where the optimization objective is to minimize the compliance C, and K and u represent the global 
stiffness matrix of the structure and displacement vectors respectively. Vi is the volume of an individual 
element, and 𝑉௝

∗ is the prescribed total structural volume. The binary design variable xij denotes the 
density of the i-th element, taking values of either xmin or 1. Here, xmin represents a small value (10-6 is 
set in this study) used to avoid singularity in the stiffness matrix. 

For the j-th material among the n materials, design variables xij are introduced to denote the density of 
the i-th element for the j-th material, satisfying: 

𝑥௜௝ ൌ ൜
1                    for 𝐸 ൒ 𝐸௝
𝑥୫୧୬              for 𝐸 ൏ 𝐸௝

      (2) 

Following previous research [26], sensitivity analysis is computed as follows: 

𝛼௜௝ ൌ ൝
ଵ

ଶ
൤1 െ

ாೕశభ
ாೕ
൨ u୧

𝐓Ku୧                      for material 1, … , 𝑗

0                                                 for material 𝑗 ൅ 1, … ,𝑛
  (3) 

It is observed that there are n − 1 groups of sensitivity numbers in the system to adjust neighboring 
materials. 

2.2 Process of the multi-material BESO method 

Similar to the single-material “solid-void” BESO method [27,28], the process of multi-material topology 
optimization in this study is outlined as follows: 

Step 1: Discretize the design domain into finite element analysis (FEA) mesh. 

Step 2: Set the topology optimization parameters for the BESO method, including the target volume 
fraction V*, evolution rate ER, filtering radius Rmin, convergence control parameter τ, etc. 

Step 3: Perform FEA to compute sensitivity number for each element. 

Step 4: Construct exponential functions to calculate the next step’s target volume until the volume 
reaches to the target volume fraction V* and remains unchanged. 

Step 5: Compute the threshold sensitivity numbers for each material; assign x values of 1 to elements 
with sensitivity numbers greater than the threshold; otherwise, assign x values of xmin. 

Step 6: Repeat steps 3-5 until the structure reaches the target volume fraction and converges. 
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3 Multi-material topology optimization for 2D cantilevers 

3.1 Cantilever with two non-zero materials 

Firstly, verification is conducted using a 2D short cantilever, as illustrated in Figure 1. The dimensions 
of the short cantilever beam are 100 mm × 60 mm, with a finite element mesh of 200 × 120. The left 
side of the cantilever beam is fully fixed, while a concentrated force F = 100 N is applied on the right 
side. Two non-zero materials are employed in the topology optimization process: material M1 with a 
Young’s modulus E1 = 200 GPa and material M2 with E2 = 20 GPa, both having a Poisson’s ratio of ν = 
0.3. The evolution rate is set to ER = 0.01, with target volume fractions of vf1 = 0.5 and vf2 = 0.5, 
indicating an equal proportion of the two materials in the final structure. The filter radius is set to r = 2 
mm. 

 

Figure 1: Design domain, support and load configurations for the 2D short cantilever. 

 

Figure 2: Evolutionary histories of compliance, volume fractions, and topology of the cantilever. 

The entire evolutionary process of the topology optimization is illustrated in Figure 2. Initially (Iteration 
0), as shown, the entire design domain is composed of material M1 (red). As the topology optimization 
progresses, the proportion of the weaker material M2 (blue) begins to increase. After 35 iterations, the 
volume fractions of the two materials become equal, each accounting for 50%. Following this, the 
volume fractions remain constant, and the structure gradually converges. 
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3.2 Effect of relative ratio of Young’s modulus of two non-zero materials on the results of topology 
optimization 

To explore the influence of the relative ratio of Young’s modulus between the two non-zero materials 
on the results of topology optimization, a series of variations in Young’s modulus ratio are set. E1 is kept 
constant at 200 GPa, while E2 is respectively set to 2 × 10-4 GPa, 20 GPa, and 100 GPa. All other 
parameters remain consistent with the settings in the case depicted in Figure 2. The topology 
optimization results obtained based on these settings are illustrated in Figure 3. 

It can be observed that when there is a significant difference in Young’s modulus between the two 
materials (say E1: E2 = 1:10-6), the optimal topology of this dual-material cantilever is very similar to the 
result of a single-material short cantilever. In fact, when using the “soft-kill” BESO method [19] for 
“solid-void” topology optimization, setting void elements to have a material with E = Emin can be 
considered equivalent to the scenario presented here in Figure 3(a). Thus, “solid-void” single-material 
topology optimization can be regarded as a special case of non-zero two-phase material topology 
optimization. 

Furthermore, as the Young’s modulus of material M2 increases, the optimal topology of the structure 
changes. When E1: E2 = 1:10-6, the topology of material M1 is very simple, with only major components 
composed of M1, unlike the topology with E1: E2 = 1:10-6, where the structure exhibits many branches. 
Additionally, as the Young’s modulus of M2 increases, the total compliance of the structure gradually 
decreases. Therefore, it can be seen that the difference in Young’s modulus between the two materials 
has a significant impact on the optimal topology of the structure. 

 

Figure 3: Two-material 2D cantilevers with varying relative ratios of Young’s modulus optimized 
using multi-material BESO. 

3.3 Effect of material quantity variation on multi-material topology optimization. 

When the method is extended to incorporate more materials, it yields a wider range of results. As 
depicted in Figure 4, topology optimizations are conducted for the same cantilever with 2, 3, and 4 
materials, respectively. The Young’s modulus of materials in these cases is set as follows: (a) E1: E2 = 
10:1; (b) E1: E2: E3 = 1:0.1:0.01; (c) E1: E2: E3: E4 = 1:0.1:0.01:0.001. In each case, the target volume 
fractions for all sub-materials are equal. Other parameters remain consistent with those in Figure 2. 

 

Figure 4: 2D cantilevers optimized using multi-material BESO with 2, 3, and 4 materials. 
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It can be observed that the results of topology optimization in Figure 4 indicate that the number of 
materials significantly influences the optimal topology of the structure. Additionally, as the number of 
materials with lower Young’s modulus increases, the compliance of the structure gradually rises. This 
structural weakening is mainly caused by the reduction in the usage of high-performance materials, thus 
reducing structural costs. This advantage holds significant implications for cost control in practical 
engineering structures. 

4. Thickness optimization for free-form shells 

4.1 Thickness optimization of free-form shells with two different thicknesses 

The algorithm mentioned above, when applied to 3D shell structures, yields lightweight and efficient 
shell forms. The free-form shell to be optimized is depicted in Figure 5, with geometric dimensions of 
12 m × 8 m × 5 m. The shell is discretized into 8960 quadrilateral elements for FEA. The thickness of 
the shell is set as t = 50 mm. PLA material is planned for 3D printing construction of the free-form shell. 
The material properties are set as follows: modulus E = 4 GPa, density ρ = 1.43 g/cm3, and Poisson’s 
ratio ν = 0.3. 

In this topology optimization example, only the self-gravity acting on the shell is considered. All 
positions where the shell contacts the ground are set to be fully fixed. The evolution ratio for topology 
optimization is set to ER = 0.01, and the filter radius is set to rmin = 600 mm. The target volume fractions 
for both materials are set to vf1 = 0.5 and vf2 = 0.5. 

 

Figure 5: Front and top views of the free-form shell to be optimized. 

 

Figure 6: Free-form shells with two different thicknesses optimized using multi-material BESO. 
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The shell’s topology optimization is firstly conducted by using two materials. Two materials with 
varying Young’s moduli donate shell components with different thicknesses. For instance, E2 = 2 GPa 
represents a thickness of t = 25 mm. This proportional substitution is a simplification; strictly speaking, 
it requires rigorous finite element analysis or loading tests to determine the actual ratio of Young’s 
moduli. In this paper, only a simplified linear relationship is utilized to demonstrate the feasibility of 
using a multi-material topology optimization method for discretized thickness optimization of shells. 

The results of the topology optimization using two materials are depicted in Figure 6. Material M2, 
donating the thinner thickness material, is utilized in these cases, with Young’s moduli of E2 = 2 GPa, 
0.4 GPa, and 0.04 GPa for thicknesses of 25 mm, 5 mm, and 0.5 mm, respectively. It is noticeable that 
the distribution of materials exhibits some variation due to the differing ratios of Young’s moduli 
between the two materials. Additionally, as the Young’s modulus of material M2 decreases, the overall 
compliance of the structure gradually increases. 

4.2 Thickness optimization of free-form shells with multiple different thicknesses. 

Furthermore, this paper conducts additional topology optimization for the free-form shell using a 
different number of materials, as illustrated in Figure 7. Specifically, topology optimization is performed 
using 2, 3, and 4 different materials, with Young’s moduli E1 = 4 GPa, E2 = 2 GPa, E3 = 1 GPa, and E4 
= 0.5 GPa, representing thicknesses of 50 mm, 25 mm, 12.5 mm, and 6.25 mm, respectively. 

The topology optimization settings remain consistent with those of the case in Figure 6. In each case, 
the target volume fraction for each material is set to be equal. That is, in the bi-material structure, the 
target volume fraction for each material is 0.5; in the tri-material structure, it is 0.33 for each material; 
and in the quad-material structure, it is 0.25 for each material. After employing the multi-material BESO 
method, the optimal topologies shown in Figure 7 are obtained. 

 

Figure 7: Free-form shells with various thicknesses optimized using multi-material BESO. 

It can be observed that these structures exhibit significant differences, with richer details emerging as 
the number of materials increases. Comparing the compliance of these structures reveals that, with an 
increase in the number of materials, the volume fraction of high-performance sub-materials within the 
structure gradually decreases, leading to a gradual increase in the compliance of the shell structure. 
Similar to the 2D cantilever example, although the overall stiffness of the structure decreases, there is a 
potential for overall cost reduction, warranting further investigation. 



Proceedings of the IASS Symposium 2024 
Redefining the Art of Structural Design 

 

 

 7 

 

5. Conclusion 
The multi-material topology optimization algorithm proves to be capable of achieving optimal designs 
for multiphase material structures under given material volume constraints, demonstrating tremendous 
potential in the lightweight design of shell structures. This study, focusing on 2D short cantilevers firstly, 
investigated the influence of sub-material Young's modulus variations on the optimal topology and 
structural performance within the framework of the multi-material bi-directional evolutionary structural 
optimization (BESO) method. Furthermore, the research delved into the variations in optimal topology 
and structural performance of multi-material short 2D cantilevers with different numbers of sub-
materials, providing insights into the relationship between these variables. Moreover, based on the 
insights gained from the 2D short cantilever study, this multi-material BESO approach is applied to 
optimize a free-form shell measuring 12 m × 8 m × 5 m, achieving discrete thickness optimization of 
the shell under various material property settings and thickness quantities. These preliminary studies 
provide a basis for further refinement in shell design, offering a novel approach to lightweight design in 
shell structures. 
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