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Abstract

The Isogeometric Analysis (IGA) approach, developed to smoothly integrate precise geometric descrip-
tions from Computer-Aided Design into numerical solution algorithms of the Finite Element Method
(FEM), presents a significant step in structural engineering and architecture. Due to the common use of
Non-Uniform Rational B-Splines as basis functions in IGA, there is a dependence on Gauss quadrature
integration, often leading to computational expenses during stiffness matrix calculation and postprocess-
ing. Meanwhile, the smoothed finite element method introduces a strain smoothing technique to address
issues within FEM, involving a volume-average of strain within specified smoothing domains created
on the top of the mesh elements. This paper proposes an innovative approach by merging the strain
smoothing technique with IGA, resulting in the Isogeometric Smoothed Analysis. Its main focus centers
on generating smoothing domains in the parameter space rather than the physical space. Following this,
the method maps physical quantities necessary for implementing the strain smoothing technique from
quantities calculated in the parameter space. To achieve this mapping, constructing the Jacobian ma-
trix at the center point of the smoothing domain becomes essential, facilitating the relationship between
the two spaces. The numerical findings illustrate that the proposed formulation can deliver accurate
solutions with improved convergence rates, particularly in specific cases. This study plays a key part
in merging structural engineering and architecture, improving the conversion of complex geometric de-
signs into strong numerical solutions through more efficient methods.Future exploration in this domain
may encompass the application of these techniques to diverse element shapes, extension of methodolo-
gies to address three-dimensional challenges, and refinement of approaches for improved computational
efficiency and accuracy.

Keywords: isogeometric analysis, finite element method, smoothed finite element method, strain smoothing tech-
nique, cell-based model, edge-based model, node-based model.

1. Introduction
The Finite Element Method (FEM) is a powerful numerical technique for solving discrete problems
represented by partial differential equations (PDEs). It was developed through collaborative efforts of
mathematicians and engineers during the 19th and 20th centuries and significantly shaped during the
1950s-1970s with the birth of digital computers. FEM is widely used in structural mechanics, aeronau-
tical, and mechanical engineering [1, 2].

Researchers have extensively studied the properties of FEM, identifying drawbacks outlined in litera-
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ture [2, 3, 4]. Standard FEM methods encounter several limitations. Firstly, discretizing geometry into
multiple elements introduces significant approximation errors in the solution field. Additionally, ele-
ments often display excessive stiffness, leading to accuracy issues and volumetric locking. Moreover,
mesh distortion can compromise accuracy and result in poorly conditioned Jacobian matrices. Further-
more, FEM solutions offer only a lower bound, complicating the certification of solutions. Finally, stress
solutions suffer from inaccuracies due to stiffness and strain evaluation across element interfaces.

Hughes et al. [5, 6] introduced Isogeometric Analysis (IGA) as an innovative numerical scheme aimed
at minimizing geometric errors. IGA employs Non-Uniform Rational B-Splines (NURBS) basis func-
tions for precise geometry representation, maintaining the isoparametric concept of using the same basis
functions for both geometry description and solution field, similar to FEM. Studies have demonstrated
that IGA yields more accurate and efficient solutions compared to FEM. In a parallel line, Liu et al. [2,
4] proposed integrating the strain smoothing technique into FEM to improve solution accuracy. This led
to the development of smoothed finite element methods (S-FEM), which adjust the compatible strain
field by introducing various smoothing domains over the element mesh. Common S-FEM models in-
clude cell-based (CS-FEM), node-based (NS-FEM), and edge-based (ES-FEM). Recent studies show
that these methods effectively address FEM’s limitations.

This study aims to explore the application of strain smoothing techniques to IGA, inspired by Liu’s
work on employing such techniques in FE settings and proposing S-FEM models.The three techniques
from S-FEM models will be incorporated into IGA and verified through designated benchmark nu-
merical examples. The implementation of NURBS in IGA guarantees precise geometry representation
regardless of mesh refinement. However, NURBS often extend across multiple elements, leading to
inefficient Gauss quadrature integration for stiffness matrix calculation. The motivation for this study is
many-sided. Firstly, NURBS are recursively defined, requiring extensive calculations to determine the
polynomial degree, which results in significant computational expenses, particularly when computing
their derivatives. Integrating strain smoothing into IGA has the potential to eliminate the need for costly
NURBS function derivatives, thereby enhancing computational efficiency. Furthermore, the using of
S-IGA models can lead to enhanced solution accuracy and convergence rates. This improvement can
make a big difference, especially in areas like shell structures, where IGA is commonly used.

DongDong et al. [7] proposed a strain smoothing approach for NURBS-based Isogeometric finite el-
ement analysis. However, this study differs in method and explores three distinct models: varying
cell-based, node-based, and edge-based models.

2. Isogeometric Analysis with Strain Smoothing Technique
This section offers an overview of the fundamental theories and essential information necessary for the
development of S-IGA models. The methodology described in this chapter is designed to be applicable
to all S-IGA models. Here, the focus lies on implementing and testing S-IGA models for static and stable
two-dimensional problems. Consider a 2D solid mechanics problem domain Ω, bounded by Neumann
boundary ΓN and Dirichlet boundary ΓD, such that ΓN ∪ ΓD = Γ and ΓN ∩ ΓD = ∅, The proposed
S-IGA numerical scheme operates as follows:

2.1. Smoothing Domain Creation

The process of creating smoothing domains for S-IGA models begins by discretizing the domain into
a number of elements, following the same procedure as in standard IGA, which generates an element
mesh. Unlike S-FEM, where models are primarily constructed in physical space, S-IGA models are
essentially built in parameter space. This approach is adopted because the parameter space offers a clear
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and standardized definition for the domain mesh, specifying the number of elements (Ne), nodes (Nn),
and edges (Neg). An innovative approach was developed to accurately map all necessary quantities for
implementing the strain smoothing technique in IGA from the parameter space to the physical space.
The problem’s discretized domain in the parameter space is subsequently partitioned into a collection of
”non-overlapping” and ”no-gap” smoothing domains, denoted as Ωs

k. Each smoothing domain typically
comprises ns sub-smoothing domains.

2.1.1. Cell-based Isogeometric Smoothed Analysis (CS-IGA)

The typical approach to constructing CS-IGA models involves partitioning the quadrilateral element in
the parameter space into quadrilateral smoothing domains within the element. This subdivision of each
element into multiple smoothing domains is achieved by connecting equidistant points on one edge with
corresponding points on the opposite edge, as depicted in Figure 1(a) and 1(b).

2.1.2. Node-based Isogeometric Smoothed Analysis (NS-IGA)

This method involves establishing smoothing domains related to element nodes on top of the domain
mesh. Consequently, the overall count of smoothing domains equals the total number of nodes, denoted
as Ns = Nn. To construct the smoothing domain linked with a node k in the parameter space, mid-
edge points are sequentially connected to the central points of the neighboring elements of node k, as
depicted in Figure 1(c). The smoothing domain associated with node k includes the aggregation of all
subdomains from the surrounding elements.

2.1.3. Edge-based Isogeometric Smoothed Analysis (ES-IGA)

In ES-IGA, the smoothing domain is linked to the edge. It is generated in the parameter space for both
inner and outer edges by connecting the two endpoints of the edge with the central points of adjacent
elements, as illustrated in Figure 1(d). Therefore, the total count of smoothing domains equals the total
number of edges (Ns = Neg).

(a) (b) (c) (d)

Element nodes Points for smoothing domain creation

Figure 1: Three techniques for generating smoothing domains in the parameter space:(a) cell-based - 4
smoothing domains; (b) cell-based - 16 smoothing domains; (c) node-based and (d) edge-based

2.2. Values of NURBS Basis Functions

The values of the NURBS basis functions are determined exclusively at locations along the boundaries
of the smoothing domains, specifically at the Gauss points intended for integrating the weak form of
equilibrium. Unlike in S-FEM models, the calculation of quadratic (or higher-order) NURBS basis
function values relies on the Cox-de Boor formula and cannot be obtained through the linear Point
Interpolation Method (PIM) (for further information on the PIM, refer to [4]). Additionally, there’s no
need to compute the derivatives of these basis functions, as is typically done in standard IGA models.
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2.3. Smoothed Strain Field Construction

The smoothed strain field in S-IGA models is derived using the strain smoothing technique employed
in S-FEM models, under two key assumptions outlined by Liu [4]. First, within the smoothing domain,
the strain is estimated by smoothing the compatible strain field. Second, the smoothed strain field is
assumed to remain constant throughout the entire smoothing domain.

Equation 1 represents the smoothed strain equation for the S-IGA model, which is the same equation
derived for the S-FEM model in [4].

ε̄(x) =

ncp∑
I=1

B̄I(x)d̄I =
[
B̄1(x) B̄2(x) ... B̄Ncp

(x)
]
d̄ = B̄(x)d̄, (1)

where B represents the global ”smoothed strain-displacement” matrix and ncp denotes the total number
of control points in the system. The Matrix B̄I(x) exhibits non-zero values only for the group of control
points supporting the smoothing domain containing x. This set consists all supporting control points of
elements contributing to the respective smoothing domain. The computation of B̄I(x) can be performed,
as outlined in Equations 3, following the approach introduced by Liu et al. [4].

B̄I(x) =
1

As
k

∫
Γs

k

Ln(x)RI(x)dΓ =

 b̄Ix 0

0 b̄Iy
b̄Iy b̄Ix

 , b̄Ih =
1

As
k

∫
Γs

k

nk(x)RI(x)dΓ, h = x, y. (2)

The integration across the smoothing domain boundary employs the Gauss quadrature rule. Specifically,
one Gauss point is applied for the line integration along each segment Γs

k,p of boundary Γs
k, as depicted

in Figure 2. However, due to the non-linear nature of the displacement field along the boundary Γs
k,

employing multiple Gauss points per segment provides a more accurate approximation. Converting the
integration presented in Equation 2 for b̄Ih into a summation yields:

b̄Ih =
1

As
k

ns
Γ∑

p=1

nh,pRI(x
G
p )lp, h = x, y, (3)

Here, As
k represents the area of the smoothing domain in physical space, and ns

Γ denotes the total number
of boundary segments Γs

k,p within the smoothing domain boundary Γs
k. The coordinates of the Gauss

(a) (b)

Figure 2: Mapping of smoothing domains quantities from (a) parametric space to (b) physical space.
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point located at the midpoint of the boundary segment Γs
k,p are denoted by xGp . Additionally, the length

of Γs
k,p and the outward unit normal vector at its midpoint are represented by lp and nh,p, respectively.

The values of smoothing domain area (As
k), edges lengths (lp), and normal vectors (np) at Gauss points

in physical space are determined by mapping the equivalent quantities from the parametric space, as
illustrated in Figure 2. This mapping necessitates the computation of the Jacobian matrix at the center of
the smoothing domain in the parameter space (Jk,c). The transformation relations described in Equation
4 are employed to convert line and area values from parametric space to physical space, similar to
the role of a deformation gradient in transforming elements from their reference configuration to their
deformed configuration. Importantly, this mapping remains valid regardless of the shape of elements
in the physical space. For elements with linear edges, these quantities can be easily computed using
straightforward mathematical operations.

As,x
k = detJk,c ·As,ξ

k

lxk,p =
∑2

I=1 ∥JT
k,c ·

[
(ξI − ξgp) (ηI − ηgp)

]T ∥
nx
k,p = J−1

k,c · nξ
k,p

, (4)

The determinant of the Jacobian matrix calculated at the center point of the smoothing domain is denoted
as detJk,c, while As,ξk represents the area of the smoothing domain in parameter space. The parametric
coordinates of the start and end points of edge p are given as (ξI , ηI) with I = 1, 2, and (ξgp, ηgp)

represent the coordinates of the Gauss point for edge Γs,ξk, p. The vector nξk, p includes the components
of the unit outward normal vector calculated at the Gauss point in parameter space.

2.4. Discretizing and Solving the Linear Algebraic System of Equations

After obtaining the smoothed strain displacement matrix, the sub-stiffness matrix for control point I
with respect to J is calculated. Next, the stiffness matrix is computed for each smoothing domain and
assembled into the global stiffness matrix K̄. Upon completion of the assembly, Dirichlet boundary
conditions are enforced to restrict all rigid body movements and eliminate singularity. Using this reduced
stiffness matrix and the load vector, displacements at the control points are determined through the
equation K̄d̄ = f̄ . Once displacements are obtained, the displacement field for the entire domain can
be established. Subsequently, strains and stresses are computed during post-processing using the strain-
displacement and constitutive relations, respectively.

2.5. Error Assessment in IGA and S-IGA

To assess the outcomes of the S-IGA models, a comparison will be made with both the standard IGA
and analytical solutions using displacement and energy norms. Stress values at element nodes will also
be compared against analytical solutions. However, evaluating strains and stresses at element nodes
in S-IGA is not as straightforward as in IGA. Initially, average strain values are computed for each
smoothing domain (ε̄sk), and then strains/stresses at node j are determined as area-weighted averages of
the surrounding smoothing domains, calculated using Equation 5. Here, nj

s represents the number of
smoothing domains around node j, Ans

j is the total area of all smoothing domains around node j, ε̄sk is
the smoothing strain of smoothing domain k, and As

k denotes the area of smoothing domain k.

ε̄j =
1

Ans
j

nj
s∑

k=1

ε̄skA
s
k, (5)
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3. S-IGA for Structural Mechanics Problems
To evaluate the efficacy of the proposed method, the performance of S-IGA models will be assessed
against standard IGA solutions in terms of accuracy, convergence rate, and efficiency. This evaluation
will be conducted using select structural mechanics problems with known analytical solutions. Two
specific examples will be examined: a cantilever beam subjected to parabolic loading at the free end and
a hollow disk under inner pressure. Each problem will be analyzed using four numerical models: IGA,
4CS-IGA, NS-IGA, and ES-IGA. These models utilize quadratic NURBS functions for both geometric
representation and numerical solution in both directions. Boundary conditions will be modeled using
only Dirichlet boundary conditions, imposing exact known displacements on all domain boundaries.
This approach helps eliminate errors that may arise from modeling Neumann boundary conditions.

3.1. Numerical Examples: Cantilever Beam

The first benchmark problem under investigation is the rectangular cantilever beam, depicted in Figure
3. In this scenario, the beam experiences a maximum parabolic vertical traction of P = 1000 along its
free edge, with the assumption of a plane stress condition. The geometric and material parameters are
defined as follows: beam length L = 48, beam height H = 12, modulus of elasticity E = 3 × 107,
moment of inertia I = H3/12 = 144, and Poisson’s ratio ν = 0.3. The analytical solution is given
in Equation 6 by reference [8]. The cantilever beam domain is discretized into three regular meshes of
4-sided elements with dimensions (8× 2), (16× 4), and (32× 8).

Figure 3: Rectangular cantilever beam with a parabolic load at the free end



ux(x, y) =
Py

6EI

[
(6L− 3x)x+ (2 + v)

(
y2 − H2

4

)]
uy(x, y) = − P

6EI

[
3vy2(L− x) + (4 + 5v)

H2x

4
+ (3L− x)x2

]
σxx(x, y) =

P (L− x)y

I
, σyy(x, y) = 0, τxy(x, y) = − P

2I

(H2

4
− y2

) , (6)

The displacement and energy norms of S-IGA models are compared with those of IGA model in Figure
4 (a) and (b). The ES-IGA model shows noticeably better performance in terms of displacement norm
error compared to the standard IGA model. The convergence rate and accuracy in the displacement
norm of the IGA, CS-IGA, and NS-IGA models are nearly identical (almost the same). Regarding the
energy norm, the standard IGA exhibits the smallest error with the best convergence rate.

Figure 4 (c) and (d) compares the computational time of various numerical methods for achieving solu-
tions of equivalent accuracy. The ES-IGA model emerges as the clear winner in terms of efficiency when
measured by the displacement norm, closely followed by the 4CS-IGA model in second place. Both of
these methods deliver accurate solutions akin to the standard IGA but within a shorter computational
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(a) Errors in displacement norm (b) Errors in energy norm

(c) Efficiency in displacement norm (d) Efficiency in energy norm

Figure 4: Errors and efficiencies of IGA and S-IGA models for the cantilever beam problem in displace-
ment and energy norms.

(a) (b)

Figure 5: Exact and numerical stresses in the cantilever beam problem using 4CS-IGA, NS-IGA and
ES-IGA models (a) σxx and (b) τxy

time. However, in terms of efficiency measured by the energy norm, the 4CS-IGA model excels as the
top performer, while the ES-IGA model is deemed equally efficient as the standard IGA.

Figures 5 present a comparison between normal and shear stresses computed at the nodes with the
analytical solution. The smoothed numerical solutions closely match the exact solution away from the
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problem boundaries. However, the accuracy of stress solutions near the boundaries is slightly diminished
compared to those in the inner regions. This phenomenon has also been observed and discussed by Liu
et al. [4, 9, 10], who attribute it to the non-symmetry of smoothing domain creation at the boundaries.

3.2. Numerical Examples: Hollow Disk

Another problem investigated in this study is the elastic hollow disk problem, as depicted in Figure 6.
To facilitate numerical analysis, only a quarter portion of the disk is modeled due to its symmetry. The
disk is subjected to an internal pressure of magnitude P = 1, and a plane stress condition is assumed.
The geometric and material properties include an outer radius of b = 5, inner radius of a = 1, modulus
of elasticity of E = 1, and Poisson’s ratio of ν = 0.3. The analytical displacement and stress solutions
given in Equation 7 can be found in [8]. The hollow disk domain is created and divided into three regular
meshes comprising 4-sided elements with dimensions (4 × 4), (8 × 8), and (16 × 16). These meshes
utilize quadratic NURBS basis functions in both circumferential and radial directions.

(a) (b)

Figure 6: Elastic hollow disk problem. (a) Problem definition; (b) Numerical model


ur(r, θ) =

a2Pr

E(b2 − a2)

[
1− ν +

b2

r2
(1 + ν)

]
, uθ(r, θ) = 0

σrr(r) =
Pa2

b2 − a2
− Pa2b2

r2(b2 − a2)
, σθθ(r) =

Pa2

b2 − a2
+

Pa2b2

r2(b2 − a2)

(7)

The displacement and energy norms of both IGA and S-IGA models for the disk with a circular hole
problem are illustrated in Figures 7 (a) and (b). It can be observed that, once more, the ES-IGA model
yields the smallest error in the displacement norm and an adequately small error in the energy norm. Fur-
thermore, all tested numerical methods, except for the NS-IGA, exhibit roughly the same convergence
rate in the displacement norm, approximately 2.

The efficiency comparisons, based on achieving the same accuracy in displacement and energy norms,
are illustrated in Figure 7 (c) and (d). Notably, the ES-IGA model emerges as the most efficient solution
in terms of displacement norm, requiring only half the time of IGA and three-fifths of the time of 4CS-
IGA to achieve the same level of accuracy. Following closely behind, the 4CS-IGA method proves to be
the second most efficient approach in displacement norm, demanding approximately two-thirds of the
time required by IGA for equivalent accuracy. In terms of energy norm efficiency, the ES-IGA model
once again demonstrates its superiority by providing the fastest accurate solution while reducing the
computational cost by approximately one-fifth of that required by IGA. Furthermore, when using coarse
meshes (i.e., element lengths greater than half), it is observed that 4CS-IGA offers a more efficient

8



Proceedings of the IASS Annual Symposium 2024
Redefining the Art of Structural Design

(a) Error in displacement norm (b) Error in energy norm

(c) Efficiency in displacement norm (d) Efficiency in energy norm

Figure 7: Errors and efficiencies of IGA and S-IGA models for the hollow disk problem in displacement
and energy norms.

(a) Stress σxx (b) Stress σyy

Figure 8: Exact and numerical stresses of the disk with hole problem using 4CS-IGA, NS-IGA and
ES-IGA models (8× 8 mesh).

solution than IGA. However, standard IGA’s high convergence rate gives it an edge over other S-IGA
models, especially with finer meshes. The stresses computed in both the x and y directions using S-IGA
models are depicted in Figure 8. Notably, these computed stresses closely match the analytical solution
beyond the hole boundary.
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4. Conclusion and Outlook
The application of strain smoothing techniques to isogeometric analysis (IGA) has been explored. Three
variants of smoothed IGA (S-IGA) models, including cell-based (CS-IGA), node-based (NS-IGA), and
edge-based (ES-IGA) models, were investigated. Methodology development and comparison against
analytical solutions led to several key findings: S-IGA models maintain computational efficiency by
retaining the same number of degrees of freedom as IGA. However, interpolating basis function values
along smoothing domain boundaries in S-IGA models necessitates more sophisticated methods due to
the nature of quadratic or higher-order functions. Notably, the accuracy and efficiency of ES-IGA and
4CS-IGA models outperform standard IGA, particularly in terms of displacement norm. On a positive
note, ES-IGA and 4CS-IGA models often demonstrate high convergence rates in both displacement
and energy norms. Nevertheless, stress solutions near problem boundaries in S-IGA models may be
less accurate due to asymmetry in smoothing domains.Further exploring strain smoothing techniques
in standard IGA holds potential for advancement. This involves investigating their use with triangular
elements, which might improve accuracy and computational efficiency. Adapting existing smoothed
finite element methods for 3D problems to IGA could also enhance solutions. Additionally, optimizing
methods by using multiple Gauss points per edge, increasing smoothing domains for CS-IGA models,
and incorporating new basis function types may lead to better numerical schemes.
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