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Abstract 

This paper introduces an efficient form-finding method and a dedicated modeling and computational 

platform to enhance the efficiency of cable dome structure design. The form-finding method adopts a 

basic strategy by transforming nonlinear equilibrium equations into nonlinear least-squares problems 

and subsequently employing the improved Dog-Leg method to solve the transformed problems. The 

proposed method is highly efficient, capable of saving a significant amount of time in the analytical 

process, while the platform is designed to streamline the intricate modeling process. Comprising three 

modules, namely the pre-processing module, the computational module, and the post-processing module, 

the platform offers comprehensive support. The pre-processing module focuses on swift modeling of 

cable dome structures, setting material parameters, defining section parameters, establishing constraints, 

and applying loads. The computational module is capable of addressing various challenges, including 

prestress design, section design, static analysis, modal analysis, and dynamic analysis. The post-

processing module allows for data analysis and visualization of computational results. The integration 

of the form-finding method within the platform proves instrumental in saving considerable time for 

engineers engaged in the design of cable dome structure. 

Keywords: cable dome, tensegrity, form-finding, modeling platform, dog-leg method 

1. Introduction 

The cable dome structure, a typical non-self-stressed tensegrity structure, finds extensive application in 

the realm of long-span structures. The first and most renowned cable dome structure was proposed by 

Geiger [1], with representative projects including the 1986 Seoul Olympics gymnastics and the Suncoast 

Dome in the United States [2]. Another example of a typical cable dome structure is the Levy dome. In 

contrast to the Geiger dome, the Levy dome features a greater number of interconnected elements, 

resulting in enhanced overall stability. Notable projects showcasing this design include the Georgia 

Dome, which was completed in 1999 [3]. 

In tensegrity structure design, form-finding stands as a pivotal phase. It revolves around determining 

optimal prestress distributions and node coordinates within specified structural topology constraints, 

aiming to attain a stable equilibrium state. For tensegrity structures with boundary constraints, like cable 

domes, form-finding is also essential in the design process. Since the internal forces of tensegrity 

structures are highly related to their geometric configurations, form finding is a highly nonlinear problem. 

To address this challenge, extensive research has been undertaken, leading to the development of diverse 

form-finding methods. 

Despite the strides made in form-finding methods, there remain constraints regarding methods 

incorporate physical information of structural elements. This is particularly relevant for tensegrity 

structures like cable domes, where analyzing equilibrium states under external forces and determining 

internal member forces are critical for engineering design. Additionally, the presence of kinematic 

modes in tensegrity structures can lead to singularities in stiffness matrices [4], which poses difficulties 

in solving nonlinear equations using the finite element method. To this end, this paper introduces an 
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innovative form-finding method for tensegrity structures, based on the improved Dog-Leg method. 

Initially, the nonlinear equilibrium equations of tensegrity structures are reformulated into nonlinear 

least-squares problems. To address this, the Dog-Leg method [5], a hybrid method of Gauss-Newton 

and steepest descent methods, is employed. While effective within a predefined trust region, this method 

may encounter issues with singular stiffness matrices. Consequently, the MBFGS (Modified Broyden-

Fletcher-Goldfarb-Shanno) method [6], an improved version of the BFGS approach, is subsequently 

utilized. The resulting DL-MBFGS form-finding method demonstrates superior performance in handling 

stiffness matrix singularities. Ultimately, this form-finding method is applied to the form-finding 

problem of cable dome structures. 

Although the fundamental analytical theories of cable domes are relatively mature, their analysis still 

heavily relies on commercial finite element software, resulting in a somewhat cumbersome modeling 

process. Similar to long-span spatial grid structures, the spatial grid structure design software MSTCAD 

developed by Luo et al. [7] has wide applicability, ease of operation, and reliability, providing significant 

assistance and promotion for engineering applications. In light of this, based on the existing static and 

dynamic analysis methods for tensegrity structures, this paper introduces a specialized modeling and 

analysis platform for cable dome structures. This platform comprises three primary modules: pre-

processing, computational analysis, and post-processing. The pre-processing module facilitates swift 

modeling of cable dome structures, definition of material and cross-sectional parameters, establishment 

of constraints, and application of loads. The computational analysis module can undertake a range of 

complex analyses, including prestress design, section design, static analysis, modal analysis, and 

dynamic analysis. Finally, the post-processing module achieves data processing and visualization of 

computational results, enhancing the overall usability and efficacy of the platform. 

2. Form-finding method for cable dome structures 

2.1 Nonlinear equilibrium equations 

The equilibrium equation of a tensegrity structure can be generated by the principle of minimum 

potential energy[8]: 

 =Kn w  (1) 

where K  is the global stiffness matrix, w  denotes the total external forces vector and n  is the nodal 

coordinates vector to present the configuration of the structure: 

 
1 2

   
T

T T T

n
 = 
 

n n n n  (2) 

where vector n  y  z
T

i i i i
x =    is the i-th node’s coordinate, in which 

i
x , 

i
y , 

i
z  denote the nodal 

coordinate values along the x-, y-, and z-direction respectively.  

As the global stiffness matrix K  is also related to the nodal coordinate n , the equilibrium equation 

shown in Eq.(1) is a typical nonlinear equation. To solve this equation the tangent stiffness matrix 
T

K  

needs to be obtained by taking the first derivation of the composite function Kn  with respect to n [9], 

[10]. 

 T G E
= +K K K  (3) 

 
3

ˆ( )T
G
= K C qC I  (4) 

 
3ˆˆˆ T

E q q
−=K A EAl A  (5) 

where 
G

K  denotes the geometric stiffness, 
E

K  denotes the material stiffness. 
3

I  is the three-

dimensional identity matrix,   denotes the Kronecker product and 
q

A  is the equilibrium matrix with 

force density q  as the variable [11]. 
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The geometric stiffness matrix 
G

K  of the structure is only related to the topology of the structure C  and 

the force density q  of the elements, while the material stiffness matrix 
E

K  is related to topology C , 

nodal coordinates n , elements length vector l , cross-sectional vector A  and elastic modulus vector E . 

2.2 Nonlinear least-squares problems 

To solve the nonlinear equilibrium equations one of the effective methods is to transform it into 

nonlinear least-squares problems: 

 
3

2

1

1 1
min ( ) ( ) ( ) ( )

2 2

n
T

i
i

F p
=

= =n n p n p n  (6) 

where 
i

p  denotes the unbalanced force on the i-th node. As the function value approaches zero, it can 

be inferred that the structure has achieved a state of equilibrium, indicating that the form-finding process 

is completed. For cable dome structures, we only need to use the unbalanced force on free nodes to 

construct the nonlinear least squares problems: 

 
3

2

1

1 1
min ( ) ( ) ( ) ( )

2 2

n
T

f i f f f
i

F p
=

= =n n p n p n  (7) 

where 
f

n  denotes the free nodes without constraints. 

The derivatives of ( )F n  can be expressed in terms of the Jacobian matrix ( )J n  and the Hessian matrix 

( )H n : 

 
( )

( )

T
 

=  
 

p n
J n

n
 (8) 
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=


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
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n
H n J n J n n n

n
 (9) 

Then, the gradient of ( )F n  can be expressed: 

 ( ) ( ) ( )TF =n J n p n  (10) 

2.3 Innovative form-finding method 

The nonlinear least-squares problems can be solved by the dog-leg method. In which the iterative step 

dl
h  can be defined as a combination of the steepest descent direction 

sd
h  and the Gauss-Newton 

direction 
gn

h : 

 ( )
sd

F=− h n  (11) 

where   denotes the coefficient that the steepest descent method could achieve the maximum decrease 

in the direction of ( )F− n . 

Different from solving the standard Newton equations 2 ( ) ( )
n

F F =−n h n , the second order term is 

excluded from 
2 ( )F n  and the Gauss–Newton direction is obtained by solving: 

 ( ) ( ) ( ) ( )T T
gn
=−J n J n h J n p n  (12) 

In dog-leg method, it employs a trust region approach to find the relationship between the direction 
sd

h ,

gn
h  and trust region : 
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 (13) 

where trust region   is a region around the current point in the parameter space, within which the 

approximation model is considered accurate enough to guide the algorithm. Fig.1 shows the method to 

determine the iterative step 
dl

h : 

   
(a) case 1 (b) case 2 (c) case 3 

Fig 1 Relationship between the Dog-Leg direction and trust region. 

Moreover, the size of the trust region   is adjusted adaptively during the optimization process to 

balance the model accuracy and exploration of the parameter space. Here, we use the gain ratio  , 

which is the ratio of the actual reduction in the objective function to the predicted reduction based on 

the linear approximation of the objective function, to adjust the size of the trust region adaptively: 

 

( ) ( )
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( ) ( ) ( )

2
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
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=

 +

n h n
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 (14) 
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k

when

when

when






+



  

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  




h

 (15) 

It should be noted that the nodal coordinates are only updated for iterative calculation when the gain 

ratio   is positive. 

Notably, when the columns of ( )J n  are linearly related, ( ) ( )TJ n J n  becomes singular [12]. As a result, 

Eq. (12) cannot be solved directly, ultimately leading to the invalidity of the Dog-Leg method. Inevitably, 

this issue may happen during the form-finding process of the tensegrity structures due to the presence 

of mechanism displacement modes. To overcome this, the MBFGS (Modified Broyden-Fletcher-

Goldfarb-Shanno) method [6] is introduced. 
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In the MBFGS method, an approximate positive definite matrix B  is proposed to replace the Hessian 

matrix during the iteration process. The basic strategy is defined by： 

 1k k k k k k+
= = +B s y δ ν s  (16) 

where 
1k +

B  denotes the updated B  matrix, 
1k k k+

= −s n n ,
1

( ) ( )
k k k

F F
+

= −δ n n  and

2
(1 max{ / ,0}) ( )T

k k k k k
F= + − ν δ s s n  is a positive constant. Through this strategy, if 

k
B  is a 

positive definite matrix, 
1k +

B  is ensured to be a positive definite matrix: 

 1

T T
k k k k k k

k k T T
k k k k k

+
= − +

B s s B y y
B B

s B s y s
 (17) 

Based on the MBFGS method, Eq. (12) can be rewritten as: 

 ( ) ( )T
mbfgs

=−Bh J n p n  (18) 

The matrix update strategy in the MBFGS method can gradually approach the Hessian matrix while 

ensuring the positive definiteness of the B  matrix. Although it can address the issue of the singularity 

of ( ) ( )TJ n J n , the MBFGS method comes with a high computational complexity and requires the storage 

of historical calculation information. 

Considering the strengths and weaknesses of both methods, a DL-MBFGS form-finding method is 

proposed in this paper. The improved Dog-Leg method combines the characteristics of the MBFGS 

method to replace the Hessian matrix with an updated B  matrix when ( ) ( )TJ n J n  becomes singular. The 

iterative calculation begins with the Dog-Leg method. During the process, the condition number of 

( ) ( )TJ n J n  is used to determine whether the Hessian matrix is approaching singularity. If the following 

equation is satisfied, Eq. (17) is then employed to replace the Hessian matrix: 

 
2

( ( ) ( ))Trcond J n J n  (19) 

The DL-MBFGS method includes the following main steps. 

(1) Input: initial configuration 
1

n , connectivity matrix C , and cross-sectional vector A , mass vector m , 

elastic modulus vector E , rest length vector 
0

l  of all elements. 

Set: tolerance of the step size 
1
 ,

2
 , trust region 

1
 . 

If 
0 0 2

( ( ) ( ))Trcond J n J n , set: 
1 0 0

( ) ( ) 0.1T= +B J n J n I , where I is the identity matrix 

(2) Calculate ( )p n , ( )F n , ( )J n  

(3) Calculate ( ) ( ) ( )TF =n J n p n   

Calculate 
2 ( ) ( ) ( )TF =n J n J n  

(4) Judge 
2

( ( ) ( ))Trcond J n J n , if satisfied, calculate Eq. (17), set 
2

1
( )

k
F

+
 =n B  

(5) Calculate 
2 1( ) ( )

gn
F F−=− h n n  , if 

gn
h  , 

dl gn
=h h    otherwise, calculate ( )

sd
F=−h n  , if 

sd
 h , 

dl sd

sd


=h h

h
, if not ( )

dl sd gn sd
  = + −h h h h  

(6) Judge the terminal condition
1dl
h , and if satisfied, terminate the iteration  if not, go to (7) 

(7) Calculate the gain ratio   , if 0   , set /2=   and go back to (5)  otherwise, set 
dl

= +n n h  , 

meanwhile, if 0.75  , set max( 3 )
dl

 =  h， , if 0 0.25  , set /2=   and go back to (2) 
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3. Modeling and analyzing platform for cable dome structures 

The modeling and analyzing platform for the cable dome structure is divided into three modules: the 

pre-processing module, the computational module, and the post-processing module. The main 

framework of the program is shown in Fig 2. 

 

Fig 2 Framework of the platform 

3.1 Modeling 

The main interface of the platform is shown in Fig 3. Due to the multiple nodes and complex elements, 

the modeling process of cable dome structures using general finite element software is relatively 

complex. However, cable dome structures usually have high symmetric geometric configurations and 

fixed topology characteristics. Based on these characteristics, the pre-processing module of the program 

provides a parameterized modeling approach. Users only need to select the desired cable dome type 

(currently available in three forms: Geiger dome, Levy dome, and Geiger-Levy dome), and input 

parameters such as the span S , inner ring radius Ir , rise H , diagonal cable angle  , circular grids 

number
c

n  and radial grids number 
d

n  of the designed cable dome. The program can automatically 

generate the corresponding cable dome structure. 

 

Fig 3 Main interface of the platform 

Following the framework. after swift modeling, the pre-processing stage can be finalized by defining 

the material and section-types, setting boundary constraints and applying external loads. 

Cable Dome Modeling and Analyzing Platform

Pre-processing

Applying Loads

Constraint Settings

Section Settings

Material Settings

Swift Modeling

Computation Post-processing

Dynamic Analysis

Modal Analysis

Static Analysis

Section Design

Prestress Design

Modal Result

Dynamic Result

Static Result

General Result
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3.2 Analyzing 

The computational analysis module serves as the core component of the platform, consolidating a range 

of classic static and dynamic algorithms. This module encompasses five key sections: prestressed design, 

section design, static analysis, modal analysis, and dynamic analysis. 

In the static analysis section of the software, three methods are integrated: the DL-MBFGS form-finding 

method proposed in this paper, the modified Newton method [13], and the LMFF method [14]. Each of 

these methods has their own advantages and can be used to cross-validate the accuracy of the calculation 

results. 

Upon completion of the modeling and calculation analysis of the structure, the software provides a post-

processing module for visually presenting the calculation results. This allows designers to gain a clear 

understanding of the structural performance and facilitates the implementation of corresponding 

optimization design processes. 

3.3 Illustrative examples 

To further exemplify the efficacy of the DL-MBFGS form-finding method and the cable dome platform, 

we present an example of a three-dimensional Levy dome. 

Consider the Levy dome shown in Fig 4, with a span of 100m, an inner ring radius of 10m, a rise of 10m, 

and a diagonal cable angle of 30 degrees. The circular grids number is 12 and radial grids number is 3, 

with a total of 84 nodes and 228 members. The basic unit of the structure is shown in Fig 5, where black 

lines represent bars and red lines represent cables. Corresponding node and element indexes are marked 

on each node and element. The overall structure can be obtained by rotating the basic unit around the z-

axis at an angle of π/6 radians. In the main interface shown in Fig 3, after clicking the generate button, 

the software will automatically generate the node coordinates and topology of the structure. The initial 

coordinates of the nodes within the basic unit are listed in Table 1. The group indexes corresponding to 

each element are shown in Table 2. 

 

Fig 4 Configuration of Levy dome 

Table 1 Initial nodal coordinates of nodes 1 to 7 (unit: m) 

Node 1 2 3 4 5 6 7 

0
x  -35.47 -23.33 -9.66 -35.42 -23.33 -.966 -50.00 

0
y  -9.49 0.00 -2.59 -9.49 0.00 -2.59 0.00 

0
z  4.72 7.89 9.61 -7.70 -2.98 0.19 0.00 
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Table 2 Element grouping index 

Element index 1 2 3 4 5 6 7 8 9 10 

Group index 1 2 3 4 4 5 5 6 7 7 

Element index 11 12 13 14 15 16 17 18 19  

Group index 8 8 9 10 10 11 11 12 13  

 

Fig 5 Basic unit of Levy dome 

To specify the corresponding material parameters, the Young's modulus of bars and cables are set to be 
112.06 10 Pa  and 107.6 10 Pa  respectively. After prestress and section design, Table 3 and Table 4 

present the initial force density and cross-sectional areas of the elements belonging to the i-th group. 

Table 3 Initial force density of the elements comprising the Levy dome 

 01

gq  
02

gq  
03

gq  
04

gq  
05

gq  
06

gq  
07

gq  

Force density ( /N m ) -15455 -69105 -3134 20326 12468 29516 11854 

 08

gq  
09

gq  
010

gq  
011

gq  
012

gq  
013

gq   

Force density ( /N m ) 4877 18851 8557 1919 17955 80083  

Table 4 Cross-sectional areas of the elements comprising the Levy dome 

 
1

gA  
2

gA  
3

gA  
4

gA  
5

gA  
6

gA  
7

gA  

Cross-sectional areas (
2mm ) 19130 10466 5694 998 646 1526 507 

 
8

gA  
9

gA  
10

gA  
11

gA  
12

gA  
13

gA   

Cross-sectional areas (
2mm ) 228 620 327 83 253 1129  

In this case, a surface load of 800 2/N m  is assumed to be applied on the Levy dome. The nodal loads 

are then calculated based on the projected area, shown in Fig 6. 

 

Fig 6 External vertical loads applied on the top nodes. 
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Considering the slack of cables, the DL-MBFGS method integrated in the platform is then employed to 

obtain the equilibrium configuration.  

Furthermore, we evaluate the accuracy and efficiency of the DL-MBFGS method by comparing the 

result of the modified Newton method [13] and the LMFF method [15]. Fig 7 (a) shows the z-direction 

displacement values of Node 1 and Node 2, obtained through the application of the three distinct 

methods, across a range of surface loading conditions. WhileFig 7 (b) illustrates the variations in force 

density of Element 1 and Element 2 under different surface loading conditions. We can see that the 

results obtained from the three different methods demonstrate a remarkable level of agreement, 

providing strong evidence for the accuracy and validity of the DL-MBFG method. 

  

(a) displacements of Node 1 and Node 2 (b) force of Element 1 and Element 2  

Fig 7 Comparison of results obtained using different methods 

To observe the overall stress situation of the structure, the axial force and stress cloud map generated by 

the software are shown in Fig 8. 

  

(a) force cloud map (b) stress cloud map 
Fig 8 Static cloud map 

4. Conclusion 

This paper introduces an innovative form-finding method and modeling platform designed for cable 

dome structures. Adhering to the principles of parametric modeling, users are required to input only a 

few design parameters to generate the cable dome structure. Serving as the core component of the 

platform, the computational analysis module, equipped with the DL-MBFGS form-finding method 

proposed in this article, ensures efficiency and reliability. Concurrently, the platform's post-processing 

module provides users with a comprehensive overview of calculation results, thereby fostering a deeper 

understanding of structural performance. 
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