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Abstract 

The structural behaviour of concrete shells is complex, which typically makes their design and 

production more difficult than prismatic structures. The Finite Element (FE) method is often used for 

the structural analysis of shells, but obtaining accurate results can be computationally expensive. The 

present research investigates the use of deep learning techniques to estimate rapidly and accurately the 

structural behaviour of concrete shells. While these models require a large initial time investment to 

generate a training dataset and to fit the models, they can then make predictions in a few seconds. Using 

a flooring thin-shell system as a test-case, a dataset of 20,000 shells with varying spans, heights, 

thicknesses, and material properties was generated. Linear FE analysis was used to determine the stresses 

and the buckling factor of the shells under a load case combining self-weight and live loads. Two types 

of deep learning models, a Multilayer Perceptron (MLP) and a Convolutional Neural Network (CNN) 

were trained to predict the stress and the buckling behaviour of shells. The results obtained highlight the 

ability of deep learning models to predict rapidly and accurately the stresses and the buckling factor of 

concrete shells, as the errors measured are consistently below 2%. 

Keywords: Concrete, Shells, Structural analysis, Finite Element Analysis, Buckling, Stress, Machine Learning, Deep Learning, 

Multilayer Perceptron, Convolutional Neural Network  

1. Introduction 

Surrogate models are built using techniques from the field of statistical learning to find functions that 

map the inputs of a simulation model to its outputs [1]. These data-driven models are built by “learning” 

from the results of physical experiments, or from digital simulations, such as Finite Element (FE) 

analysis. They require a large initial time investment to collect the simulation samples and build a dataset 

but can be significantly quicker than a simulation once the model is built [2]. While various types of 

surrogate models exist, recent research focuses on models from the deep learning field [3,4]. In the field 

of biomechanics, Multilayer Perceptrons (MLPs) were successfully trained using FE data for various 

applications such as the mechanical behaviour of the aorta [5], of arterial walls [6], and of the liver [7]. 

In structural engineering, MLPs have been trained to predict the structural behaviour of truss structures 

[8], and of steel joints [9]. The use of more complex model architectures has also been explored. 

Convolutional Neural Networks (CNNs), which make use of image data, have been used to predict stress 

fields [10,11]. The outputs of mesh-based simulations were predicted using Graph Neural Networks 

(GNNs), which can learn from data structured in graphs [12]. Physics-Informed Neural Networks 

(PINNs) were developed to embed the laws of physics in deep learning models [13]. The PINN 

architecture was also adapted to surrogate modelling in the field of solid mechanics [14]. Generative 

Adversarial Networks (GANs), which rely on the competition of two networks, have been used 

successfully for the prediction of stress fields [15,16] and for the prediction of buckling modes [17]. 

Regarding the structural system of interest, several studies [16,17,18] have used deep learning models 
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to predict the structural behaviour of thin-walled structures, more specifically for stress and buckling 

prediction. However, as per the authors’ knowledge, the structural behaviour of concrete shells has never 

been predicted using deep learning. 

The present research seeks to adapt deep learning techniques to predict the structural behaviour of 

concrete shells. The capability to estimate rapidly and accurately the buckling factor and the stresses of 

concrete shells could have several applications in their design and production. For example, these 

estimations could be used to guide form-finding and design optimisation, which typically requires many 

iterations, in which various shapes are explored and assessed. 

Shells are non-prismatic structures with shapes designed to maximise membrane action. Therefore, 

transforming their shapes into a data structure that can be used as input to a deep learning model is a key 

task for predicting the structural behaviour of shells. In this study, two different deep learning model 

architectures, MLPs and CNNs, which use two different data structures as input and, as a result, two 

different methods to represent shells shapes, are investigated. They are trained to predict the stress fields 

and the buckling factor under a load case combining self-weight and live loads, in order to determine 

their relative performance and suitability for this novel application. A concrete thin-shell flooring system 

is used as a test case. This structure is inspired from the flooring system developed by the ACORN 

research project (Figure 1), with which this research is aligned, and which can achieve a 48% reduction 

in embodied carbon relative to an equivalent flat slab [19]. 

 

Figure 1: ACORN's full-scale segmented concrete thin-shell prototype © Paul Shepherd 

2. Methods 

2.1. General overview 

A dataset of 20,000 thin-shells with various spans, heights, thicknesses, and material properties was 

computationally generated (sections 2.2.1. and 2.2.2.). An FE analysis was then performed for each to 

determine the stresses and the buckling factor when subjected to a combination of self-weight and live 

loads (section 2.2.3.). These results were compiled into a stress dataset and a buckling dataset, which 

were used to train MLPs and CNNs to predict stresses and buckling factors (sections 2.3.1. and 2.3.2.). 

The tuning of the hyperparameters of the models was done in two steps. First, a random search was 

performed to explore various model configurations. Using these results as a starting point, the models 

were then further improved through manual tuning (section 2.3.2.). Finally, the performances of the best 

MLP and the best CNN were compared (section 2.3.3.). 

2.2 Constitution of the dataset 

2.2.1. Structural system 

While the dataset used to train the surrogate models comprises samples which are all different, they still 

share certain characteristics. In this study, the structural system of interest is adapted from the segmented 

thin-shell floor developed in the scope of the ACORN research project [19]. However, rather than an 

assemblage of segments, the system is a single monolith, which significantly simplifies the structural 

analysis. This monolith spans over a square area between four columns, and its corners are trimmed, 

thus forming a flat support. As an example, one meshed sample is shown in Figure 2. 



Proceedings of the IASS Symposium 2024 

Redefining the Art of Structural Design 
 

 

 3 

 

 

Figure 2: Thin-shell sample with a. a plan view (meshed) with supports in orange, b. an elevation, and c. an 

isometric view 

The material of all samples is unreinforced concrete with a Poisson’s ratio of 0.2. Regarding the loads, 

the self-weight of the concrete is taken as 2,500 kg/m3. The superimposed dead load on top of the thin-

shells, and the live loads are respectively equal to 1 kN/m2 and 2.5 kN/m2 of projected flat floor area 

(typical for UK office buildings [20]). All loads are considered to act in the vertical direction and were 

combined with the load factors prescribed by Eurocodes [21] for the Ultimate Limit State (ULS). Thus, 

a load factor of 1.35 was used for the self-weight and the superimposed dead load, and a load factor of 

1.5 was used for live loads. 

2.2.2. Design space and sampling plan 

The dataset comprises 20,000 thin-shells with various shapes and material properties, which were 

sampled from a design space determined by the span (from 2m to 10m), height (from 1/12th to 1/8th of 

the span), thickness (from 1/150th to 1/50th of the span), and Young’s modulus (from 27.0 GPa to 44.0 

GPa). An important task in the constitution of a dataset is the selection of samples from the design space. 

Sampling plans are based on the general idea that a surrogate model needs to be built upon a uniform 

spread of datapoints to achieve a uniform level of accuracy over the design space [2]. A key requirement 

for the choice of training samples is therefore to ensure that they are “space-filling”. In this study, the 

Sobol sequence with scrambling [22] was used to select 20,000 samples from the design space. The 

shapes of the 20,000 thin-shells were then form-found using the Updated Reference Strategy method 

[23]. 

2.2.3. Finite Element model 

All linear FE analyses were performed using the Python implementation of ANSYS [24]. Three layers 

of eight-noded elements (SOLID185 [25]) were used through the thickness. The superimposed dead 

load and the live loads were applied on the nodes located on the extrados (upper) face of the thin-shells. 

To avoid stress singularities that can be caused by fully fixed nodes, elastic supports, which were 

modelled using ANSYS’ SURF154 elements [25], were used and their stiffness was set to 3.5*1014 Pa. 

The density of the mesh was chosen after a mesh convergence study. The mesh chosen is composed of 

four layers of 33,681 nodes, which form three layers of 33,248 elements. The density is refined at the 

corners and at the mid-span edges because these areas were found to have a higher stress gradient, as 

shown in Figure 2. The same mesh topology was used for all samples in the dataset, after scaling the 

nodes coordinates to fit the span, height, and thickness of each thin-shell. The FE analyses were used to 

determine the three principal stresses σ1, σ2 and σ3, as well as the eigenvalue buckling factor, defined as 

the factor of safety against buckling for a given loading. 
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2.3. Training of the deep learning models 

2.3.1. Multilayer Perceptron 

The first type of surrogate model investigated for the prediction of the structural behaviour of concrete 

thin-shells is the MLP. The input layer of this model describes the shape and material properties of each 

shell. The geometrical descriptors include the span, the height, and the thickness of each sample. 

Additional descriptors were obtained through Principal Component Analysis (PCA), which is commonly 

used for feature selection in machine learning [26]. It was used to extract features from the mesh node 

coordinates of each thin-shell, by projecting it to a lower dimensional space, which principal axes 

represent the directions of maximum variance in the data. Even though 150 principal components were 

initially selected to ensure that enough features were extracted, it was found that the first three principal 

components respectively explained 95.71%, 1.79%, and 0.44% of the variance in the data respectively. 

However, to ensure that an important feature would not be left aside, the number of PCA features used 

as input for the MLP was used as a variable in the hyperparameter tuning process (see section 2.3.3.). 

The only material property used as input to the MLP is the Young’s modulus of each sample. The output 

layer is different for the buckling prediction MLP and for the stress prediction MLP. For buckling 

prediction, the output layer of the MLP is a single value, the buckling factor. For stress prediction, the 

dimensionality of the output layer had to be reduced, because predicting the three principal stresses for 

each node would have resulted in 404,172 output neurons, which would have had a high computational 

cost. Instead, a low-dimensional representation of the stresses was computed using PCA and the MLPs 

were trained to predict the first 1,000 components. However, the error metrics were computed after 

transforming the low-dimensional outputs of the MLP back to the original stress space. 

2.3.2 Convolutional Neural Network 

The second type of model investigated is the CNN. Unlike MLPs, CNNs are designed to learn and 

extract features from images. The first part of their architecture typically includes convolutional and 

pooling layers, which transform an input image into a feature map and reduce the dimensions of the 

data. The output matrix of these layers is then flattened and fed into the second part of their architecture, 

which is composed of fully connected layers, like the ones in a MLP [27]. For each sample in the dataset, 

a 99x99 pixels height map of the thin-shell was created. Each pixel was assigned the height of the thin-

shell at the centre of the pixel, except for the pixels located out of the structure in the corners, which 

were each assigned a value of 0. These height maps constitute the only input to the convolutional part 

of the CNN. However, additional scalars are used as inputs to the fully connected layers, which include 

the span, the height, the thickness, and the Young’s modulus of each sample. These values are 

concatenated to the flattened matrix that is fed into the fully connected layers. Given that the last part of 

the CNN architecture is similar to a MLP, the output layer is the same as described for the MLP for 

buckling and stress prediction. 

2.3.3. Hyperparameter tuning  

A deep learning model is typically difficult to optimize, as many hyperparameters related to its 

architecture (such as the number of layers for a MLP, or the kernel size for a CNN) and to the fitting 

procedure (such as the learning rate or the batch size) need to be tuned [28]. Optimal combinations can 

therefore be difficult to find. In this research, the hyperparameter tuning was performed in a two-step 

process for each model type – MLP and CNN – and for each prediction task – buckling and stress. In 

each case, a random search that explored 50 different model configurations was first performed. This 

approach was found to determine relevant hyper-parameter combinations much faster than the traditional 

grid search approach [29]. For the MLP, the search space had 11 dimensions: two related to the inputs 

(number of PCA components used and normalisation), six related to the model itself (number of hidden 

layers, number of neurons per layer, activation function, use of dropout and batch normalisation layers, 

and weight initialisation method), and three related to the fitting method (optimisation algorithm, 

learning rate, and batch size). In the case of the CNNs, the hyperparameters tuned were adapted from 

[30]. Five were used to define the convolutional part of the CNN: number of convolutional layers, 

number of kernels per layer, kernel size, pooling method, and pooling size. The hyperparameters 
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defining the fully connected layers of the CNN and the fitting procedure were the same as the ones used 

for the MLP. The number of epochs was not included as a hyperparameter, as an early-stopping 

approach, which interrupts training when the model is not progressing anymore, was preferred. The 

Mean Squared Error was used as a loss for all model configurations. The few best performing models 

in each random search were selected for the second part of the hyperparameter tuning process, where 

these were manually tuned to further improve performance. In the manual tuning phase, more advanced 

model training methods were implemented, such as learning rate scheduling which allows the learning 

rate to be reduced dynamically based on validation measurements. 

2.3.4. Measuring model performance 

The traditional approach to assess the performance of a machine learning model is to divide the dataset 

into three parts: a training set, a validation set, and a testing set. The training set is used to fit the model, 

the validation set is used for assessing its accuracy, choosing a model type, and tuning its parameters, 

and the testing set is used to measure the generalization error of the final model [31]. This approach was 

adopted, and the dataset of 20,000 samples was split into a training set with 12,800 samples, a validation 

set with 3,200 samples, and a testing set with 4,000 samples. The performances of the models were 

measured using several metrics that are commonly used for regression tasks. The ones that were selected 

for this study are the Mean Absolute Error (MAE), the Root Mean Squared Error (RMSE), and the Mean 

Absolute Percentage Error (MAPE). They are defined as follows: 

 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦𝑖 − ŷ𝑖|𝑁

𝑖       (1) 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ (𝑦𝑖 − ŷ𝑖)2𝑁

𝑖        (2) 
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1

𝑁
∑ |

𝑦𝑖− ŷ𝑖

𝑦𝑖
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𝑁

𝑖
      (3) 

 

In the above equations, N is the number of samples, yi is a tensor of the actual targets, and ŷi is a tensor 

of the predictions. Additional metrics were used for each prediction task. For buckling factor prediction, 

the MAPE5% was used, which measures the MAPE for the 5% lowest buckling factors in the test set, 

which are the most critical for structural design. For stress prediction, the MAPEpeak metric was adapted 

from [5] and used. It is defined as follows: 

𝑀𝐴𝑃𝐸𝑝𝑒𝑎𝑘 =
1

𝑁
∑ |

max (|S|)− max (|Ŝ|)

max (|S|)
| ∗ 100%

𝑁

𝑖
      (4) 

 

Where max(|S|) is the peak stress obtained using FE analysis and max(|Ŝ|) is the peak stress obtained 

using a deep learning model. All the metrics used for stress prediction are computed separately on each 

of the principal stresses σ1, σ2 and σ3. 

3. Results and discussion 

3.1. Buckling prediction 

The best-performing MLP was obtained using 25 PCA components and normalised inputs. It is 

composed of 5 hidden layers, each composed of 4096 neurons. The activation function used is the 

Sigmoid function, and the weights were initialised using values drawn from a uniform distribution. The 

model was fitted using the Adamax optimisation algorithm [32], an initial learning rate of 0.001, and a 

batch size of 32. For the CNN, the best results were obtained using 4 convolutional layers, with 32 

kernels of size 3x3 per layer. Maximum pooling was used with a pooling size of 7x7. The fully connected 

layers comprise 3 hidden layers, each composed of 256 neurons. The weights were initialised using a 
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semi orthogonal matrix, as described in [33]. The CNN was fitted using the Adamax algorithm, with an 

initial learning rate of 0.01 and a batch size of 16. The performance of both optimal models on the test 

set is summarised in Table 1. 

Table 1: Performance of deep learning models for buckling factor prediction 

Metric MAE RMSE 
MAPE 

(%) 

MAPE5% 

(%) 

Model type 
MLP 0.371 0.526 1.12 1.79 

CNN 0.0644 0.0948 0.228 0.642 

 

They both succeeded in modelling the buckling behaviour of concrete thin-shells accurately, with MAPE 

values below 2%. The CNN performed significantly better than the MLP according to all metrics, with 

a MAPE of 0.228%. Regarding the prediction of the lowest buckling factors - which are the most critical 

in the context of structural design – both models were found to perform slightly worse, with MAPE5% 

of 1.79% for the MLP and 0.642% for the CNN. The Mean Squared Error, which was used as a loss in 

the model training, could potentially be responsible for this difference, since the squaring of each error 

effectively weights large errors more heavily than small ones. As a result, the lowest buckling factors 

could potentially have a lower impact than the highest buckling factors on model fitting. Nevertheless, 

the MAPE5% of both models is still relatively low, as it is below 2% for the MLP and below 1% for the 

CNN. Further investigation was conducted to determine if the magnitude of the errors is correlated to 

the dimensions of the design space. It was found that the thickness-to-span ratio and absolute percentage 

error have a Pearson correlation coefficient of -0.347 for the MLP and -0.442 for the CNN, which 

suggests that the buckling factor of thin-shells with a low thickness relative to the span are more difficult 

to predict for both models. All the other dimensions of the design space were not found to have a 

significant correlation with the absolute percentage error. 

3.2. Stress prediction 

For stress prediction, the best-performing MLP was obtained using 142 PCA components and 

normalised inputs. It is composed of 5 hidden layers, each composed of 1024 neurons. The activation 

function used is the Rectified Linear Unit function, and the weights were initialised using a semi 

orthogonal matrix. The model was fitted using the Stochastic Gradient Descent optimisation algorithm, 

an initial learning rate of 0.01, and a batch size of 32. The best CNN was obtained using 4 convolutional 

layers, with 4 kernels of size 7x7 per layer. Average pooling was used with a pooling size of 9x9. The 

fully connected layers comprise 4 hidden layers, each composed of 512 neurons. The weights were 

initialised using values drawn from a uniform distribution. The CNN was fitted using the Adamax 

algorithm, with an initial learning rate of 0.01 and a batch size of 16. The performance of both models 

on the test set is summarised in Table 2. 

Table 2: Performance of deep learning models for stress prediction 

Metric MAE (kPa) RMSE (kPa) MAPEpeak (%) 

Principal stress 

component 
σ1 σ2 σ3 σ1 σ2 σ3 σ1 σ2 σ3 

Model type 
MLP 4.72 2.84 9.31 20.6 10.8 30.9 0.631 0.761 0.402 

CNN 2.04 1.43 3.71 5.68 4.38 7.68 0.435 0.414 0.186 

 

The results obtained for the MLP and the CNN demonstrate their capability to predict accurately stress 

fields, as the MAPEpeak is below 1% for all principal stresses. For both models, the largest MAE and the 

lowest MAPEpeak are measured on σ3, the principal stress component with the highest compressive 

stresses. However, according to all the metrics, the CNN performs better than the MLP. Indeed, for the 

CNN, the MAPEpeak is below 0.5% for all stress components, which is the case for only one principal 
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stress component for the MLP. An example of a stress field predicted by both models is shown in Figure 

3. 

 

Figure 3: An example of stress field prediction 

Further investigation revealed that the MAPEpeak is correlated with the span. For the MLP, Pearson 

correlation coefficients of 0.321, 0.268, and 0.301 were measured for the correlation of the span with 

the MAPEpeak of σ1, σ2 and σ3 respectively. In the case of the CNN, these correlations are respectively 

equal to -0.246, -0.012, and -0.449. This suggests that the MLP is better at predicting the stress fields of 

the thin-shells with the lowest spans, while the CNN is more accurate with the highest spans. The 

Pearson correlation coefficients of the other dimensions of the design space were not found to be 

significant. Additionally, the spatial distribution of errors was investigated. The MAE was computed for 

each node across all thin-shells and plotted on a flat normalised projection of the mesh. As shown in 

Figure 4, the highest MAE values are measured for the nodes that are near the corners of the thin-shells. 

Additionally, the better performance of the CNN compared to the MLP is clearly visible. The same 

behaviour was observed for all principal stresses regardless of the relative position through the thickness 

of the thin-shells. 

 

Figure 4: Nodal MAE for σ3 in the intrados (lower) face of the thin-shells 
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4. Conclusion 

This research presented a deep learning-based approach to determine the stresses and the buckling factor 

of concrete thin-shells. Two types of deep learning model were investigated, MLP and CNN. It was 

found that both models were able to predict the buckling behaviour accurately, as the MAPE values 

measured are consistently below 2%. Regarding stress prediction, the same conclusions can be made 

since both models have MAPEpeak values below 1%. For both prediction tasks, the best performing CNN 

was found to be more accurate than the best performing MLP. The capability to estimate rapidly and 

accurately the critical buckling load and the stresses of concrete shells could enable several applications 

in the design and production of concrete shells. For design, these estimations could be used to guide 

form-finding. In the production phase, the impact of geometric imperfections caused by manufacturing 

processes could be assessed before the concrete sets, thus enabling potential corrections to be applied. 

Future research will focus on the use of different model types, on the integration of the models into a 

form-finding method, and on the refinement of the FE model. The new models explored will include 

GNNs, which can learn from graph-structured data, and mixed-fidelity models, which use a mix of low-

fidelity and high-fidelity simulations for model training. The FE model will be improved with the 

modelling of geometric and material nonlinearities. Additionally, geometric imperfections will be 

introduced in the thin-shells to investigate the potential use of deep learning models in the manufacturing 

context and for the prediction of more complex stress fields. 
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