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Abstract

Owing to advancements in analysis and construction techniques, an increasing number of gridshells are
designed and constructed for covering large space. Planarity of piecewise linear grid curves formed by
beam elements leads to high constructability and cross-sectional compatibility at joints. However, a stiff
tension ring is needed for transmitting the external loads to the supporting structure mainly through axial
forces of members, constraining interior space and design freedom. This study proposes a design method
for gridshells using Laguerre geometry, specifically the L-isothermic L-minimal surface. Its planar
curvature lines and adjustable principal stresses in the principal curvature direction offer advantages in
constructability and mechanical properties. By placing the beams along the curvature lines of this curved
surface to design a gridshell, it is expected to support loads primarily through axial force. We propose
a method to adjust stress distribution along the curvature lines of the continuous shell so that the stress
approaches zero at a specific point on the surface boundary under pressure load. Thus, optimizing beam
cross-sections of the gridshell to approximate stress distribution of the L-isothermic L-minimal surface
enables designing gridshells without strong edge beams along one edge.
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1. Introduction
Advancements in architectural technology have led to the development of various methods for designing
curved structures covering large spaces with increased design flexibility. For example, the geometry of
curves and surfaces [1], evolving from traditional spherical/cylindrical shells and regular truss structures,
can be optimized to efficiently distribute internal forces. This approach has historical roots dating back to
the use of arches and vaults. Modern developments include free-form shell structures, widely embraced
in contemporary architecture for their ability to cover large spaces. There are many researches focusing
on harmonizing structural integrity and creativity in architectural design employing curved surfaces.

A notable development for curved latticed shells is the gridshell, where structural members are arranged
in a grid pattern. For instance, the concourse at King’s Cross Station in London features a gridshell roof,
creating a visually striking and expansive space. A mesh on a curved surface represented by a gridshell
is constructed using triangular or quadrilateral elements, employing geometric properties defined by
differential geometry [2]. The surface shape and the cross-section of each member in a gridshell are
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often optimized to realize a desirable internal force distribution where the axial force is dominant in
each member and to minimize the shear and torsion of members and grid units. Additionally, we can
reduce construction costs and enhance the stiffness and stability of the structure by arranging joints along
planar curves [3].

The membrane theory addresses the equilibrium of a shell structure dominated by in-plane tension, com-
pression, and shear forces, and accordingly, bending and torsional moments as well as the out-of-plane
shear forces are neglected. Surfaces with specific force distributions under the uniform pressure load,
such as isothermic [4] and membrane O surfaces [5], have been studied in the field of differential geom-
etry. Furthermore, the application of Laguerre geometry [6] has also been studied in relation to discrete
differential geometry. Laguerre geometry particularly offers mechanically efficient surfaces with ad-
justable stress distributions under the uniform pressure load, and this characteristic can be utilized in the
design of grid shells along surfaces defined by the Laguerre geometry. However, those studies in applied
mathematics consider only the equilibrium of forces and neglect material properties and compatibility
of strains and deformation. Therefore, the actual force distribution in the deformed structure under the
specified loads is unknown.

In this study, we propose a design method for a gridshell using the L-minimal generalized Dupin cyclide,
which is an L-isothermic L-minimal surface. This surface, formulated by Schief et al. [7], offers high
constructability due to the planarity of curvature lines, allowing for efficient arrangement of structural
members of a gridshell. It also exhibits a favorable membrane stress distribution where the directions
of principal stresses coincide with the directions of principal curvatures under the uniform pressure
load. Therefore the load may be supported primarily through the axial forces of beam members in
a gridshell. The main load applied to the gridshell is the vertical gravity load, but in this paper the
normal load is applied. Although vertical and normal loads are inherently different, the direction and
magnitude of vertical loads can be approximated by the normal load for shallow shells. Furthermore, it
is demonstrated that there is one parameter in the stress distribution for normal uniform loading when
deformation is not considered, and the distribution is not uniquely determined [7]. Our study confirms
the existence of a stress distributions along curvature lines where a principal stress in one direction
becomes zero at a certain point by appropriately assigning the value of the single parameter. We then
generate an axial force distribution in the beams of a gridshell to achieve zero axial force at a member,
aligning the members along the curvature lines of the shell surface. Next, we design a gridshell through
cross-sectional optimization to minimize the norm of reaction forces along the boundary to ensure that
both geometric and mechanical properties are maintained. The actual internal force distribution when
the elastic deformation of the members is considered is confirmed by structural analysis to verify the
preservation of favorable mechanical properties of the gridshell. Although mechanical methods for
minimizing reaction forces at the edge, such as prestressing [8], have already been demonstrated, our
study uses a geometric method.

2. Equilibrium on a curved surface
In this section, we summarize the stress distribution of an L-minimal generalized Dupin cyclide for
completeness of the paper. The surface is classified as an L-isothermic canal surface. By utilizing the
properties of the surface, we can determine the tensile and compressive forces that equilibrates to the
uniform normal loads.

2.1. L-minimal generalized Dupin cyclide

The geometry of L-minimal generalized Dupin cyclide [7] is represented using parameters correspond-
ing to curvature line coordinates, denoted by α and β. Introducing u = arccos( 1

coshβ ) as a parameter,
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and expressing the surface in terms of α and u, the expression for the surface is as follows:

r = − cosα

2(a0 − c0 cosα cosu)

 cosα

a0 sinα

cosα sinu

+
1

4

−a0
2α

0

 (1)

where a0 and c0 are constants.

This surface is obtained as the envelope of a sphere whose center moves along a cycloid. The character-
istics of this surface are as follows:

1. The curvature lines are segments of circles and therefore planar curves.
2. Principal stresses occur in the direction of curvature lines in response to normal direction loads.
3. The distribution of the principal stresses for applied normal loads is defined with a single free constant.

These characteristics correspond to the following advantages when adopting the surface for designing a
gridshell in architectural structures:

1. The assemblage of the beam members can be done on a flat surface, which makes construction easier.
2. Since the axial forces of the members mainly resist the load, the strength of the member can be used
efficiently.
3. A mechanically efficient structure can be created by adjusting the distribution of axial forces.

Figure 1: L-minimal generalized Dupin cyclide

2.2. Shell membrane theory

In the shell theory, assuming zero out-of-plane moment and shear allows us to obtain the equilibrium
equations of the membrane theory.

The surface used in this study is a membrane O-surface where in-plane shear force does not exist in
the principal curvature directions. Consequently, the equilibrium equation between the constant normal
load on the surface whose magnitude per unit area is denoted by Z and the stresses per unit length
denoted by T1 and T2 in the principal directions corresponding to the curvature line coordinates α and
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β, respectively, can be expressed as follows:

T1α + (lnA2)α(T1 − T2) = 0

T2β + (lnA1)β(T2 − T1) = 0

κ1T1 + κ2T2 + Z = 0

(2)

The subscripts α and β in Eq. (2) represent the partial differentiation with respect to α and β, respec-
tively. Additionally, A1 = ||rα|| and A2 = ||rβ||, and κ1 and κ2 are the principal curvatures in the α

and β directions, respectively.

Schief et al. [7] derived the stress resultants on the L-isothermic canal surface as

T1 = − Z

2κ2
− I0

κ2A2
2

, T2 = − Z

2κ1

(
1− P 2

A2
1

)
+

I0
κ1A2

1

(3)

where P = A1 − A2, and I0 is an arbitrary constant. By varying I0, various equilibrium states can be
obtained. In addition, by substituting 0 for Z, we confirmed that the term containing I0 corresponds to
the stress in the self-stress state satifying the thirf equation in Eq.(2).

2.3. Adjustment of stress distribution

By assigning a value for I0 in Eq. (3), a stress distribution can be obtained. Therefore, it is possible to
obtain a specific I0 that gives zero stress at a certain point.

T1 = 0 ⇔ I0 = −1

2
A2

2Z (4)

T2 = 0 ⇔ I0 =
1

2
(A2

1 − P 2)Z (5)

In the following examples, the surface shown in Fig. 2 is considered. The region with four edge curves
is extracted from the surface, and I0 is calculated to ensure zero stress at the midpoint of the upper
edge in the direction corresponding to T2 specified in the blue arrow in Fig. 2(b) . The resulting stress
distribution is shown in Fig. 2.

load : Z = 1.0 KPa

(a) T1

Stress = 0 load : Z = 1.0 KPa

(b) T2

Figure 2: Stress distribution with zero longitudinal stress at the center of the top edge (×103 N/m)

2.4. Discretization of surfaces

To design a gridshell, the surface is discretized into quadrilateral mesh. As shown in Fig. 3, nodes
are placed at the intersections of curvature lines drawn at constant intervals of α and u, and beams
are arranged to connect these nodes. To compare the axial force distribution of the beams obtained
from structural analysis with the stress distribution of the continuous shell, we integrate the stress of
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the shell over the interval of the grid to obtain the corresponding axial force distribution. Additionally,
in the structural analysis, the distributed normal directional load applied to the surface is transformed
to the concentrated loads at each node whose values are determined through the integration over the
region covered by each node. This allows us to approximately correlate the distributed loads and stress
distribution on the continuous surface to the concentrated loads at each nodes and axial force distribution
of the gridshell.

3. Structural Optimization
The gridshell generated from the L-minimal generalized Dupin cyclide is supported along its perimeter.
If the reaction forces along the upper edge in Fig. 3 approach zero, its force distribution corresponds to
the vanishing axial forces of the members connected to the upper edge. Therefore, we minimize the norm
of reaction forces at the upper edge through cross-sectional optimization and compare the resulting axial
force distribution to the stress distribution of the shell. In this paper, we also consider the compatibility
of deformation, which requires structural analysis and prevents us from directly specifying the beam
cross-section based on the stress distribution.

3.1. Problem formulation and conditions

A hollow circular steel pipe is used for the beam section and its outer radius is determined by solving
the following structural optimization problem:

find d

minimize ||Fedge||2

subject to 3 ≤ d ≤ 20

(6)

where Fedge represents the vector of reaction forces at the upper edge support points and d is a vector
of the cross-sectional radii of the beams. The initial cross-section, the material properties, and the value
of normal load are shown in Table 1. The L-BFGS-B method is used for optimization using the python
library scipy.optimize.minimize [9].

support point
upper edge support point

concentrated load at node

Figure 3: Load and boundary conditions

Parameter Value
Initial radius d (mm) 10

Thickness t (mm) 1
Young’s modulus E (GPa) 100

Poisson’s ratio ν 0.3
Load per unit area Z (KPa) 1.0

Table 1: Conditions
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3.2. Results of optimization

The solution of the optimization problem results in nearly zero support reaction forces at the upper edge,
as shown in Fig. 4. This result corresponds to the axial force distribution, where the axial force in the
beam connected to the center of the upper edge becomes zero after optimization as shown in Fig. 5.
Moreover, the maximum deformation is less than 1/200 of the span; therefore, no excessive deformation
occurrs. Although details are not shown, shear forces and bending moments are negligible compared to
the axial force. As a result, we have achieved a gridshell that predominantly withstands the load through
axial force, thereby eliminating the necessity of stiff edge beams along the perimeter.

radius d = 10 (mm)
equal radius for every component

(a) Initial state

maximum  d  =  20 (mm)
minimum  d  =    3  (mm)

(b) After optimization
Figure 4: Displacement (blue arrows), support reactions (green arrows); line thickness is proportional to
beam radius (Arrows are displayed at 100 times larger for visibility.)

(a) Initial state (b) After optimization
Figure 5: Axial force distribution (×103N)

3.3. Comparison with the stress distribution of shell

The axial force distribution obtained through optimization is compared with the stress distribution of
shell obtained under the assumption of zero stress at the center of the upper edge of the surface. In this
comparison, the stress distribution in the shell is converted into an axial force distribution by integration,
which is hereinafter referred to as the ideal axial force distribution. It is confirmed from Fig. 6 and Ta-
ble 2 that the axial force distribution matches the stress distribution after optimization. Note that beams
along the outer perimeter are pin-supported at both ends; therefore, their axial forces are indeterminate,
leading to differences from the stress distribution.
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(a) Initial state (b) After optimization
Figure 6: Difference between analytical solution and ideal axial force distribution (×103 N)

Table 2: Difference between analytical solution N , and ideal axial force Nt(×103 N)
Initial state After optimization

Maximum value of N −Nt 1.923× 10−2 3.126× 10−3

Minimum value of N −Nt −1.539× 10−2 −2.474× 10−3

Average of |N −Nt| 1.239× 10−2 2.474× 10−3

4. Conclusion
In this study, we proposed a design methodology for gridshell structures using L-isothermic L-minimal
surfaces. The gridshell designed using the proposed method resists primarily by axial forces against
normal loads. Previous studies [7] have shown that the stress distribution in L-isothermic L-minimal
surfaces can be expressed in terms of a single arbitrary constant, and using this property we have shown
that the constant can be determined so that the principal stress in a single direction vanishes at a certain
point. The continuous shell is converted to a gridshell, and structural analysis is carried out to find
the actual axial force under normal loads. An optimization problem is formulated to minimize reaction
forces at the specified edge of the gridshell with the cross-sectional radii of the beam members as design
variables. The optimization result verifies that the gridshell can be designed so that the axial force
vanishes at a point along the perimeter even when deformation corresponding to the actual material
property is considered. Thus, a design without a stiff edge beam or reaction from the supporting structure
can be obtained.
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