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Abstract 

This paper attempts to situate concrete recycling within the contemporary economically convenient 

waste streams. In the case of concrete, the economically convenient waste stream is to demolish it into 

rubble and take it to landfill or grind it into aggregates. This research introduces a novel method using 

machine learning algorithms to analyze and match concrete irregular rubble surfaces, transforming them 

into a new assembly called “Reused Rubble Concrete Masonry Units” (RR-CMU). The process involves 

digitally scanning rubble, fixed length vector candidate extraction and a machine learning assisted 

matching process capable of searching for and aligning data-rich digital meshes. The output of this 

matching process is a modular structural unit produced within a factory quality control setting. Case 

studies demonstrate the performance of the matching process for both simulated data sets and a digitally 

scanned set of real-world rubble. We present results to demonstrate the quality of the matching with 

one-to-one matched rubble examples. This paper shows the viability of this new upcycling workflow 

for the construction of RR-CMU directly from a waste stream and demonstrates a ninety percent 

reduction in embodied carbon (kgCO2eq) when compared to conventional concrete construction. 

Keywords: Rubble, Demolition, Recycling, Circular Economy, Concrete, Embodied Carbon, Machine Learning, 

Computational Matching, Computational Design 
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1. Introduction 

The volume of concrete manufactured globally has and does continue to increase exponentially.[1] It 

follows that the demolition of concrete buildings is likely to increase exponentially in the future. This 

paper presents tools to help the construction industry in the future usefully recover more of the material 

that previous generations amassed. Concrete is typically taken to landfill or ground to aggregate; 

however, examples of end-of-building-life concrete reuse do exist.[2] Past examples typically involve 

careful extraction of complete concrete units from the demolition site. This paper differs in that it 

attempts to situate the recycling process within the contemporary economically convenient waste 

streams. In the case of concrete, the economically convenient waste streams happen to be rubble.[3] 

This paper explores the use of machine learning to help automate and navigate the complexity of 

matching complex irregular rubble surfaces. Automation of this process is necessary if rubble is to be 

cost competitive to other highly industrialized/standardized concrete products. This paper positions 

complex scanning and matching technologies as a process which could happen in a factory setting, and 

the output as a factory produced competitive block.  

The applications anticipated include the use of RR-CMU for compression only walls or vaults. 

Recycling concrete into RR-CMU offers a significant reduction in the embodied carbon relative to 

concrete structure; particularly by reducing the need for virgin cement, as demonstrated in 4.1.1. 

1.1. Related Work 

Strategies for re-configuring rubble have received recent attention from Gramazio Kohler Research at 

ETH [4], The Structural Exploration Lab at EPFL [5], and the Matter Design group at MIT [6][7]. The 

broad idea of using machine learning strategies to assist in material reuse has been posited by Certain 

Measures in Cambridge MA,[8] and the Circular Engineering Lab at ETH [9]. Companies like 

Zenrobotics also contribute to the use of spectrometry & computer vision in the waste stream. [10] 

1.2. Research gaps and new contributions. 

Firstly, most research into concrete rubble reuse focuses on field assembly; this paper suggests that 

sophisticated matching and assembly could in the future occur in a factory, where an irregular rubble 

element can be tamed into an easy-to-use block with appropriate quality control. Secondly, this paper 

also introduces machine learning methods for matching one irregular rubble edge to another irregular 

rubble edge and evaluates this systems viability as a low carbon construction alternative. 

2. Processing Rubble for Matching 

This multistep process involves scanning rubble, computationally orienting it, simplifying it, and 

extracting candidate sub-surfaces for matching comparisons, then serializing those numbers into fixed 

length vectors which machine learning networks and matching algorithms can process and pair. 

2.1 Scanning 

     

Figure 1 – Scanning in process at Tinguely Recyclage SA, located in in Écublens, Vaud, Switzerland 
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The rubble was scanned with a Faro freestyle handheld 3d Structured Light Scanner. Circular Positional 

Tag Markers were used to assist in the scan registration. Concrete rubble was on timber 2”x4” studs, 

which allows the bottom edge of the concrete to be captured by the scanner more easily. Scanning 

always misses one face, which is acceptable if using flat rubble (like floor slabs), but would not work 

for more complex pieces of concrete rubble. This scanning set-up is sufficient to scan the exposed edges. 

2.2 Mesh Processing 

The point cloud scans are processed in Rhino using a shrink-wrap feature. A minimal bounding box is 

found for each mesh, and it is orientated to sit on the edge closest to the center of gravity. 

 

Figure 2 - Scanned Rubble meshes with minimal bounding dimensions, center of mass, and an arrow pointing to 

the “base”.   

2.2.1 Sub-mesh extraction 

A complete batch of all possible rectangular sub-surface grids and are procedurally generated for each 

shape. These subsurface are extracted in three directions, with the “flat base” not considered for 

matching as these forms will form one side of the RR-CMU rectangle. The minimum size of the 

subsurface can be varied, such that matching only occurs on a reasonably substantial proportion of the 

shape and we will yield a match with at least twenty percent or more of the shape in each projection. 

       
Figure 3 – Diagrams to express the sub-surface Extraction for multiple rubble elements 

2.2.1 Fixed Length Vector Creation 

An analysis grid is created with a fixed number of points. In the case of this study the analysis grid is 

255 floating point numbers. The creation of fixed length vectors allows for matching algorithms to 

compare the values [11]. This same analysis grid is used for the three different directions of analysis.  
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Figure 4 - Example 255 data point Extraction. 

 
Figure 5 – Examples of the rock sub-surface extraction 

2.2.1 Orient slices around origin 

Each subsurface analysis grid is centered to make matching more comparable; all edges normalized 

relative to their own bounds such that the location on the mesh does not matter, only the bounds of the 

specific extracted sub-mesh. The analysis grid is stretched to the size of the maximum bounding box for 

the input geometries. 

 

Figure 6 – Examples of the rock sub-surface data centered on the analysis grid.  

3. Matching Rubble 

3.1. Machine Learning Mapping for Different Rubble Edge Types 

These meshes are dense and require a lot of computer time to compare against one another. Machine 

learning can be used to speed up this process. In this case, a classifier is trained to differentiate different 

types of edges. This is essentially a dimensionality reduction problem, from a very dense set of mesh 

into a low dimension embedding of data. This requires many pieces of training data to show the kinds 

of edges that could be processed. In our case we supplemented the 8 one-to-one scanned pieces of rubble 

with a library of 100 pieces of rubble scanned by the authors, and also downloaded from a dataset in 

literature (see figure 7).[12]  
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Figure 7: Training Data 

3.1.2 Dimensionality Reduction Embedding 

The fixed length vectors described in 2.2.1 are taken for all meshes within the training data. These arrays 

are mapped together using either t-SNE or via a TensorFlow autoencoder.[13] Three points is a useful 

dimensionality reduction, as the results can be presented in a 3d-mapping (see fig. 8).   

 

 

Figure 8. Rubble Edge Embedding Map After Training 

3.1.3 Training a ML network to speak a “Rubble” Language 

Once the network is trained, we can then query the neural network and locate rubble elements within 

the embedding map. Fixed length vectors from Rhino are compiled and dispatched to TensorFlow using 

a remote procedure call (RPC). This RPC call is made using the COMPAS framework [14]. 

3.1.3 Finding Pairs – Surface Matches 

Input surfaces can be oriented by the neural network into the 3d embedding space. We can then survey 

the surfaces which are in a similar place on the map and assess which of those shapes to consider for 
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matching. These candidate pairs receive a more onerous and direct matching, whereby direct evaluation 

to find the best matching 255 fixed length vectors is undertaken. 

3.1.3 Finding Pairs – Other Optimization Parameters 

In addition to creating good edge matches, it is also important to consider other features which will 

allow for the creation of optimal RR-CMU units. These include the notion that we want to reduce the 

amount of new concrete necessary to add into the unit. We also want to consider the stability of the unit, 

and its capacity to resist force, however that is currently beyond the scope of this study. For this study 

we consider multiple options for each rubble element and compare the entity with performance features 

including how good the surface match is, and how little new concrete (black) is needed to be added to 

complete the RR-CMU. 

           

Figure 9:  Example of the interface for selecting the best match between two rubble elements. 

3.2 One-to-One Matched Rubble Example 

The One-to-One matched rubble example was assembled in the field at the re-cycling facility for ease 

of handling. The scans shown in figure 3 were taken on a cloudy day for better scanning results, the 

scans were then processed in the field, before moving the matched pairs in the field the next day. 

Creating tools which streamline the review of possible matching options would be beneficial for 

reviewing options in the field. Two matched pairs were made and recorded. 

   

Figure 10: Photos of One-to-One Matched Rubble Example. ID:07 & ID:10 
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Figure 11 – Photos of One-to-One Matched Rubble Example. ID:07 & ID:08) 

3.2.1 Matching 1:1 Example - Results Evaluation 

Once the matched pairs were positioned, the two rubble units were scanned to record the quality of the 

match and analyze the results digitally. The same scanning process as described previously, with the 

Faro Freestyle 2 handheld 3D scanner with onboard registration was implemented. 

                             

Figure 12 – Digital scans of the One-to-One matched example, set against the matching algorithm output. 

The results reveal that the real world positioned units were relatively close to the location anticipated 

by the matching algorithm script, within 10-20mm from the intended location. Using the various scans 

of the rubble, it is possible to evaluate the proximity between the two units, for the two One-to-One 

matched examples see figure 12. This analysis shows red hotspots where the two pieces of rubble are in 

contact. It is encouraging that the match between 10 and 07 maintain multiple points of red proximity.  
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Figure 13: Proximity between the matched pairs for the two One-to-One Examples 

 

3.2.2 Performance Evaluation of the One-to-One Matched Example Mockup: 

While matching the objects in a computer, it is easier to assess absolute distance from one fixed length 

vector set to another fixed length vector set with both overlaps, and space between the meshes. However, 

when matching objects in three dimensional overlaps are not possible. Part of the reason for the 20mm 

positional deviation is understood to have been caused by surface geometry not captured in the scan 

causing an early bump which then inhibited a closer match to be created. Higher resolutions and 

algorithms which take specific precautions in relation to overlaps will improve the quality of matches 

available.   

Additionally, through the One-to-One mockup. It was found that breakage during the handling is a risk 

which could compromise the matching, and care must be taken when handling and moving these heavy 

objects. Digital sensing machines are based on millimeter precision, but the fine scale movements of 

such heavy units’ do not necessarily correlate; anticipate ~20mm tolerance matching due to construction 

processes.   

The process can take time; to arrange concrete on 2”x4” timbers in a way that allows the scanner to read 

the edges, to scan the concrete and process those scans into a usable mesh, to run the matching algorithm, 

assign, to log and track rubble in the field, to move blocks in the field. It would take further time to cast 

units together and to run further structural checks or vetting on the units to ensure that they are safe for 

use. A production line designed specifically for this rubble with heavy lift equipment would be 

recommended rather than the field approach as described here. 
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4. RR-CMU Wall applications 

The use of reclaimed rubble as a concrete masonry unit in a wall application will subject the wall to a 

variety of compression and tension forces. Concrete rubble may have steel reinforcement within it 

allowing the unit themselves to have some tensile capacity, however locating and documenting the steel 

reinforcements bars within rubble concrete poses difficulties. The focus of this study is on the edge 

matching analysis and design. Further study should explore the possibilities of using RR-CMU for 

compression only vault structures. 

4.1 Wall Application 

4.1.1 Wall Application Embodied Carbon 

Tables 1 and 2 compare a mock-up shingle curtainwall against an industry baseline. Note that in table 

one, the reclaimed concrete is assessed as having an emissions factor of zero. An RR-CMU is calculated 

to be 15% of the kgC02eq for an equivalent concrete wall.  

Table 1. Reused Rubble CMU – 30m2 of wall 

 
A1 - Raw Materials for Façade 

Contractor 

A2 - Transport of 

Raw Materials 

A1 + 

A2 
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Concrete (Reclaimed)  1.7 2300 3910 0 0 100 0.07 27.4 27.4 

New Concrete  0.15 2300 356 0.1 36.6 300 0.07 7.47 44.1 

Grout Infill 0.24 2300 557 0.1 57.3 300 0.07 11.69 69.0 

         140.4 

      
    

Table 2. Concrete Wall – 30m2 of wall 

 
A1 - Raw Materials for Façade 

Contractor 

A2 - Transport of 

Raw Materials 

A1 + 

A2 
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15cm thick Concrete 4.28 2300 9833 0.1 1,012 300 0.07 206.5 1,219 

OSB Formwork  0.6 650 390 0.1 39 300 0.07 8.2 47.2 

Steel Rebar 0.04 7750 299 2.3 688 300 0.07 6.3 694.6 

         1,961 

5. Conclusion 

This paper presents a new avenue for the upcycling of concrete rubble. By scanning rubble edges, sub-

selecting candidate surfaces, and matching them together into optimized rectangles. These matched 

assemblies can be used to create Reused Rubble Concrete Masonry Units (RR-CMU). Our findings 

demonstrate early feasibility and efficiency of this method, showing a process which is aligned with the 

material available in contemporary concrete recycling plants. If RR-CMUs were proved to have a similar 

compressive strength bearing capacity, they could present a significant alternative option for many 
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different concrete applications. Future research should explore structural performance, full size 

mockups and delve deeper into quality assurance and quality control. By reimagining concrete rubble, 

this research contributes meaningfully to the circular economy within the construction industry, paving 

the way for low-carbon construction practices. 

Acknowledgements 

This work was made possible by the Holcim Foundation for Sustainable Construction. The work was 

developed in the run up to a workshop held at MIT School of Architecture and Planning with creative 

input from Yijiang Huang and Caitlin Meuller. Thanks to Tinguely Recyclage SA in Écublens, Vaud, 

Switzerland for granting us permission to scan the rubble. The IBOIS chair of timber construction kindly 

provided the Faro scanner for use.  

References 

[1] U.S.G.S. (2018) “Minerals Commodity Summaries: Cement Statistical Compendium” 

[2] C. Küpfer, M. Bastien-Masse, C. Fivet, (2023) “Reuse of concrete components in new 

construction projects: Critical review of 77 circular precedents”, Journal of Cleaner Production 

DOI:10.1016/j.jclepro.2022.135235 

[3] C. Küpfer, C. Fivet (2023) Panorama of approaches to reuse concrete pieces: identification and 

critical comparison. CISBAT 2023. DOI:10.1088/1742-6596/2600/19/192006 

[4] R. L. Johns, et al. (2023) “A framework for robotic excavation and dry stone construction using 

on-site materials”.Sci. Ro-bot.8,eabp9758. DOI:10.1126/scirobotics.abp9758 

[5] M. Grangeot, Q. Wang, K. Beyer, C. Fivet, S. Parascho (2024) Rising from Rubble: Leveraging 

Existing Construction Tools for Upcycling Concrete Waste into Slender Wall, RobArch2024, 

Toronto (manuscript accepted for publication in may 2024) 

[6] B. Clifford, D. Marshall, J. Addison, M. Muhonen (2017) “The Cannibal’s Cookbook: Mining 

Myths of Cyclopean Constructions”, Oro Editions 

[7] D. Marshall, (2020) “Computational Arrangement of Demolition debris”, Detritus. 

DOI:10.31025/2611-4135/2020.13967 

[8] Certain Measures (2016) “Mine the Scrap”, Certain Measures 

[9] S. Çetin, C. De Wolf, N. Bocken (2021) “Circular digital built environment: An emerging 

framework”, MDPI: Sustainability. DOI:10.3390/su13116348  

[10] T.J. Lukka, T. Tossavainen, J.V. Kujala, T. Raiko (2014). ZenRobotics Recycler - Robotic 

Sorting using Machine Learning.  

[11] T. Cousin et. al (2023) “Integrating Irregular Inventories: Accessible technologies to design and 

build with nonstandard materials in architecture.”. DOI:10.1088/1742-6596/2600/19/192004 

[12] Johns, Ryan Luke (2023) “Dataset for the paper "A framework for robotic excavation and dry-

stone construction using on-site materials". DOI.org/10.5281/zenodo.10038881  

[13] A. Settimi, et al (2022) “Scans dataset for evaluation of AR-based assembly pipeline of half-

timber dry-stone structures”. DOI.org/10.5281/zenodo.7189478 

[14] M. Abadi, et al (2016) TensorFlow: a system for large-scale machine learning.  

[15] T. Van Mele, et al (2019) “COMPAS: A framework for computational research in architecture 

and structures”. DOI:10.5281/zenodo.2594510, 


