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Abstract 

This paper introduces a hybrid machine learning framework designed to accelerate optioneering in 

structural form and performance. We present a method that generates synthetic data through finite 

element analysis, leveraging structural performance metrics, such as Demand Capacity Ratios (DCR), 

in a computationally efficient way. A conditional variational autoencoder is customized to learn 

probability distributions in the multi-dimensional design space, encompassing structural performance, 

geometry, and external loads. We demonstrate the efficiency of this framework with a case study 

involving a dataset of 3.5 million steel arches. Addressing the challenges of evaluating generative AI 

models, we develop a statistical metric focused on the standard deviation of the differences between 

target and AI-generated design DCRs. This metric reveals a consistent design accuracy within a 6-8% 

range of the expected target DCR across 5,000 test cases. Our method synergizes physics and 

engineering principles to enhance model training for reliable structural design, even with limited 

computational resources. The generative nature of the model positions AI as a collaborative tool for 

engineers and architects, facilitating rather than dominating the design process. To demonstrate its 

practical application, we have developed a prototype web application that showcases this AI-assisted 

arch design workflow. 

Keywords: Generative artificial intelligence, Finite-element analysis, Computer-aided optioneering, Steel arch structures, 

Accelerated-computing 

1. Introduction 

We are living in an era where computers are sparking signs of intelligence in a variety of narrow and 

general tasks [1]. Calling machines “intelligent” can be a subject of dispute, especially from the 

perspective of a structural engineer because intelligence is often demonstrated with engineering 

intuition, a characteristic that is partly developed through years of experience and exposure to a variety 

of structural design projects. Regardless, it is undeniable that modern machine learning algorithms have 

shown promising capabilities to explore (or better said, interpolation) in complex, high dimensional and 

even between multi-modal spaces (e.g., computer vision, natural language processing, audio, …) [2]. 

The family of algorithms used for such purposes are often categorized as generative Artificial 

Intelligence (AI) which opposed to the more conventional supervised learning, provide flexibility is the 

generated output.  

The goal of this paper is to investigate the potential of generative AI in exploring the space of structural 

performance, geometric form, and external forces. We have studied the potential use case of this 
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technology and how it can be integrated with the concepts of structural performance through a case study 

of steel arches subject to wind and gravity loads. The next section includes details of the physics-based 

simulations and synthetic data generation strategy. Subsequently, we will discuss the training and 

evaluation of the model. Considering the immense power of generative AI. We believe that AI will be 

one of the most impactful technologies in structural engineering. Therefore, we have dedicated a section 

to a high-level discussion on deployment challenges and how this technology could benefit a structural 

design workflow by show casing a web user interface.  

2. Synthetic data  

At the time of writing this paper, state-of-the-art deep learning models in computer vision and natural 

language processing have scaled up to billions of parameters, with larger models often demonstrating 

superior performance. However, the ability to train these models for generalization often owes itself to 

a large abundance of public internet data. In contrast, engineering design data, particularly in the context 

of machine learning, is not only limited in quantity but also frequently safeguarded due to valid 

intellectual property concerns. Structural engineering represents a distinct domain, differing 

significantly in the dimensionality and physics of data when compared to typical tasks for which 

generative AI models are trained. The volume of data necessary for obtaining reliable structural design 

performance from a machine learning model varies with the complexity of the design and the 

dimensionality of the output, presenting a question ripe for future research.  

Despite these challenges, which currently hinder the application of machine learning in structural design 

and optioneering, there is a silver lining. Engineers possess domain-specific expertise, such as 

knowledge of design codes and standards, alongside a proficiency in physical simulation methods like 

finite element analysis (FEA). Leveraging these strengths, we demonstrate that it is feasible to 

synthetically generate high-quality structural design data within a reasonable compute time, which can 

subsequently be employed to train a generative AI model. To this end, we have considered the problem 

of designing steel arches which is further explained in the following sections. 

2.1. Dataset  

The main variables required for synthetic data generation are provided in Table 1. The goal of this 

generative model is to provide engineers with a series of arch designs that meet user-defined input loads, 

span length, and a target Demand Capacity Ratio (DCR). All possible combinations of these variables 

are considered to build a training dataset. Tributary width is calculated by dividing half of the span 

length by the corresponding coefficient in the table. This value will be used to assign distributed gravity 

and wind loads to the arch elements. Wind load orientations are perpendicular to the arch curve in both 

windward and leeward directions.  

Table 1: Range and increments of synthetic data generation variables. 

Variable Min Max Increments Categories 

Arch geometry type - - - Parabola, Catenary, 

Circular 

Span length 6.1 m (20 ft) 30.5 m (100ft) 0.6 m (2 ft) - 

Shape factor 1.02 2.00 0.02 - 

Tributary width coef.(a) 1 5 1 - 

Live load  0.48 kN/m2 (10 psf) 1.44 kN/m2 (30 psf) 0.24 kN/m2 (5 psf) - 

Wind load 0.48 kN/m2 (10 psf) 1.44 kN/m2 (30 psf) 0.24 N/m2 (5 psf) - 

 

For each datapoint, a steel section is sampled from 283 standard American W shapes [3] where elements 

self-weights are automatically considered in FEA. Note that there is a distinction here between the 

proposed method and the common labeling that is used in supervised learning. In the current method, 

we sample a section and record its critical DCR as metric of structural performance. Our goal is to train 

the generative model in such a way to learn the distribution of under and overdesigned members as well 

as optimum designs. This strategy will provide users with target DCR as a control parameter which 

allows engineers to explore conservative designs, a feature that is often desired by the structural engineer 

to account for uncertainties.  The other advantage compared to supervised learning is more efficient 
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compute times. Obtaining the most efficient section for a given geometry in supervised learning, requires 

a brute-force (or alternatively an iterative optimization method) to check of possible sections and 

selecting the most economical option. Afterward, the lightest member passing the target DCR will be 

kept, and the other 282 evaluation are discarded which not only creates a substantial computational cost, 

but also is wasteful as a supervised learning algorithm will not utilize the discarded evaluations during 

training. Later in the paper, we will show that the generative model is capable of learning from DCRs 

and generating designs close to the user-defined targets. 

2.3. Stratified sampling 

The sampling strategy used to select the member size for each arch is also important considering the 

imbalance in the strength of section in the W shape database (Figure 1). The cross-sectional area can be 

used as a good measure to estimate the structural strength. Most elements in the shape database have an 

area between 0-645 cm2 (100 in2). We have sorted the sections based on area and split the range into 6 

approximately equal strata. Subsequently, we randomly sample one section from each stratum for each 

data point. Continuing this process for all arches will yield a total of ~4.5 million evaluated arch 

datapoints. To reduce the impact of outliers, we have filtered the data to keeps datapoints with DCR<1.2.  

 

Figure 1. Histogram of cross-sectional area for the 283 W sections in the AISC shape database 

2.4. Simulations 

The arch geometry is approximated by 20 linear segments utilizing a Grasshopper script in Rhinoceros 

3D [4]. The FEA is conducted by the Karamba3D plug-in in Grasshopper [5]. For simplicity we have 

assumed a 2D linear structural analysis. Simulations were conducted on 2 workstations at Thornton 

Tomasetti equipped with Intel Xeon Gold 6258 (28 cores), and AMD Ryzen Threadripper 5975WX (32 

core) CPUs.  It took approximately 10 days to complete the simulations where each workstation was 

running 6 analyses in parallel.  

3. Machine learning 

In this section we will discuss the process of training and inference of the generative model that leverages 

the dataset described earlier. Generative deep learning models often get their characteristic by sampling 

a tensor from an abstract latent space and decoding this latent representation into a meaningful output. 

We have adopted Conditional Variational Autoencoders (CVAE) [6] to generate arch designs 

considering their effectiveness and efficiency compared with more complex neural network 

architectures such as generative adversarial networks or diffusion models. The CVAE is comprised an 

encoder which is required during training and a decoder that is used both during training and inference 

(Figure 2).  
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Figure 2. The CVAE architecture and its conceptual similarity to text-to-image models are explored 

for conditional generation. The image and text prompt, as taken from the model in [7] , assist readers 

in understanding the analogy of how generative models operate. It should be noted, however, that the 

CVAE architecture described in this paper differs from most text-to-image AI pipelines. Components 

outlined with a red border are utilized during the inference phase. 

3.1. Training 

A separate model is trained for each arch type: catenary, parabola and circular. We observed that separate 

models perform better than combining different arches in a larger model. The design output is 

characterized by vector X that contains normalized values of arch rise and section properties: area (A), 

web thickness (tw), flange thickness (tf), section depth (d), strong axis elastic modulus (S) and moment 

of inertia (I). Elements of X are independently normalized with their mean and standard deviation in the 

training set.  

The encoder neural network will receive batches of X as an input and try to compress them into a latent 

representation z and later reconstruct the same X through the decoder. The loss function (𝐿𝑣𝑎𝑒) is the 

summation of Reconstruction (R) and Kullback–Leibler (KL) divergence loss functions. The second 

term will penalize the model for learning z vectors that are not following a standard normal distribution. 

The KL loss is essential as it allows to later sample new value from the z space and generate designs 

with the decoder model. In this study, we have noticed that introducing an additional weight factor 𝛼 =
0.005 to the loss function can improve the performance of the model at testing.  

                                                      𝐿𝑣𝑎𝑒 = −𝛼𝐾𝐿(𝐗, 𝐳) + 𝑅(𝐗, 𝐳)                                                         (1) 

It is also essential to condition the generated arch designs on the user input loads, span length and target 

DCR. These values represent another vector which we call C. The authors of [6] have shown that by 

simply concatenating z and C, during training, the decoder network will generate designs (X) based on 

the user input constraints (C) at inference time by sampling normally distributed random z vectors. This 

relationship is akin to how text prompts guide the generation in text-to-image models, steering the 

resultant designs (X) based on specified parameters (C).  

For both the encoder and decoder, we consider two dense layers with 1024 hidden nodes, and a latent 

dimension of 16. We utilized Adam optimizer with a learning rate of 1.0e-3 and a learning rate scheduler 

with a patience of 5 epochs at plateau and reduction coefficient of 0.2. As an example, the training logs 

are provided in for the circular arch model. A validation set is used to monitor the stability of training 

process by holding out 10% of the original dataset. This validation set is not used to measure the 

structural performance of the model. A testing strategy is studied in the evaluation section.  
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Figure 3. Training and validation losses of the CVAE model during training for circular arches. 

In our study, we conducted experiments to train the CVAE models on two distinct GPUs: a modestly 

powered NVIDIA A2000, equipped with 4 GB of VRAM, and a more advanced NVIDIA A6000, with 

48 GB of memory. We maintained identical hyperparameters for each training session. On the A2000, 

a lower-tier GPU, it took approximately 16 seconds to complete a single epoch, cumulating to less than 

an hour overall. Recall that this duration is significantly shorter than that required for synthetic data 

generation. Conversely, training on the high-end A6000 GPU yielded a quicker average time of 4 

seconds per epoch. 

This comparison aims to underscore a critical insight: engineers tasked with developing such models 

can significantly reduce the model size, consequently lowering the demand for computational resources, 

while still attaining satisfactory outcomes. It's important to note, however, that tackling more intricate 

design challenges, characterized by higher dimensionalities in X, C, and z vectors, might necessitate 

larger models and, by extension, greater computational power. 

3.2. Inference 

X contains properties of W sections which are continuous values instead of a section index. When a 

decoder generates new arch designs, it will be a combination of arch rises and this section parameters 

which do not exactly match the existing values in the shape database. Inspired by the concept of text 

embeddings in language models [8], we utilized cosine similar between generated properties and 

sections in the shape database and return to the user the closest match.    

3.3. Evaluation 

Measuring the performance of generative models is more challenging compared to the traditional 

machine learning models that are trained on labeled data. This is mainly because for a given input, there 

might be several feasible correct answers. As we will see in the next section, it is quite possible to have 

multiple arches with different combinations of rise and steel section that yield similar DCR and 

therefore, a one-to-one comparison is not appropriate.  

To address this issue, we generate a test sample of 5000 C tensors that include combinations of different 

spans, loads and target DCRs within the acceptable bounds of the training set. Then 5000 designs are 

generated conditioned on C and the critical DCR values are measured using the physics-based approach 

with FEA that was used in the synthetic data generation. The quality of a model can be measuring by 

studying the difference between AI-generated design DCRs and the user-defined target DCR. We refer 

to this metric as ΔDCR. The standard deviation of ΔDCR is a good metric to quantify the structural 
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performance of designs. This metric is provided in Table 2 for the complete test set and two typical 

range of DCR that are often used by engineers. The reliability of model in the design space can also be 

investigated using the visualization techniques demonstrated in Figure 4. 

Table 2.  Standard deviation of DCR difference between actual and AI-generated designs 

Data subset Standard deviation of ΔDCR 

Complete test set 9.09% 

Target DCR≤1.0 6.11% 

0.9 ≤Target DCR≤1.0 7.25% 

 

 

Figure 4. Performance visualization of generative model’s designs with respect to different target DCRs.   

4. Deployment and production 

Once the training is complete, the decoder network of CVAE can be used for inference and generating 

new arch designs conditioned on the user inputs. A user can define a target DCR and the number of 

generated designs with different random seeds. As an optional step, the designs can be evaluated with 

FEA to measure the actual DCR of AI-generated designs. In our user testing sessions, we have noticed 

that structural engineers often appreciate having this additional step as it enables them with an additional 

physics and code-based safety check. It is also possible that some generated designs slightly exceed the 

target DCR. The post processing step provides the option of filtering such designs and sorting the 

generated designs from lowest to highest weight.  

 

Figure 5. Inference steps, from user inputs to post processed arch designs. 

User input
Loads, span, Target

DCR,…

Generative model
Decoder network         

Optional FEA check
Measure DCR for AI-generated designs

Post processing
Weight calculations, filter 

unacceptable designs

Steel section + arch rise

Filtered designs
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The decoder network is deployed to a cloud CPU instance using Cortex (Thornton Tomasetti’s MLOps 

infrastructure). The ML inference time varies depending on network communication overhead and the 

requested number of seeds. For 20 arch designs, the inference time varies between 75-150 ms which we 

consider acceptable for quick optioneering.  

Figure 6 demonstrates the final web application that is powered by the generative arch designer. Such 

applications can serve as tools that can provide real time feedback for architects. Furthermore, structural 

engineers can also evaluate and fine-tune a larger number of designs by getting a head start using the 

generated options.  

 

Figure 6. User interface of the arch design web application. The app will filter the designs that exceed 

the target DCR and sorts designs from lowest to highest tonnage.  

5. Conclusion 

This paper has explored the potential of generative AI for structural design and form finding. Through 

a case study of steel arches subject to wind and gravity loads, we have proposed solutions to address 

challenges in certain key areas listed as follows: 

- Synthetic data generation: The structure of X and C tensors enables the generative model to 

learn from all observations including over and under designed arches. The proposed strategy 

allows for a more efficient use of compute power and dramatically reduces the simulation time. 

The steel arch dataset generation in this paper is approximately ×283 faster than a standard brute 

force optimization needed to generate labeled data. 

- Evaluation: We have proposed a physics-based approach to measure the standard deviation of 

difference between AI-generated and target DCRs as a quantifiable performance metric that can 

be used to assess and optimize the structural performance of such models.  

- AI as a copilot: This paper also presents a prototype web application that utilizes a deployed 

version of the generative model. It is shown that the AI generated designs can be automatically 

checked with an FEA engine, providing further insight for the engineers and responsible 

application of AI in structural design. 

- Efficient Computing: This paper illustrates that scaling the generative model and tailoring 

synthetic data to precise design problems can significantly curtail computational expenses 

across synthetic data generation, training, and inference. We benchmark solution times to 

highlight these efficiencies. Furthermore, our findings reveal that the proposed framework can 

be effectively trained on commonly accessible workstations, eliminating the need for industrial-
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grade computer clusters. This approach democratizes access to advanced modeling capabilities, 

making them feasible for a broader user base. 

We believe that generative AI has a great potential to be an impactful technology in the structural 

engineering industry. The combination of efficiency, precision, and flexibility offered by such models, 

promises a new era in engineering design, where creativity is augmented by accelerated AI computing. 

However, building effective design tools is only possible by leveraging domain expertise during various 

stages of application development including data preparation, training, inference and even building a 

user interface for the responsible use of AI in structural engineering workflows. As we stand at the 

forefront of integrating generative AI into structural design, there is an imperative need for continued 

research, particularly in the realms of scalability and integration with physics-based methods. As 

demonstrated in this paper, leveraging the domain expertise presents new opportunities to address the 

challenges in training more capable models in the future.  
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