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Abstract

Deployable structures can be transformed from a compact state to a deployed configuration, which en-
hances the transportability and rapid construction of structures such as transitional shelters. The design
of deployable structures requires assessing soft deployment motion, high stiffness after deployment, and
lightweightness. To satisfy these requirements, origami-based structures play a vital role because cou-
pling origami tubes provides extremely high stiffness and assures developability. To apply the features
of origami-based structures for foldable structures under various load conditions, the design framework
to determine the optimal connectivity of origami panels must be established. Toward this end, this
study performs topology optimization on the ground structures generated by the origami tessellations
to minimize the objective function. Among the origami tessellations, three-dimensional tessellation
of Miura-ori tubes, referred to as interleaved cellular origami structures, is employed because the tes-
sellation provides rigid foldability after thickness accommodation and high stiffness by the coupling
effect. Therefore, the ground structures based on the tessellation enable us to easily handle the valid
mechanisms using thick panels and keep the high stiffness during deployment. This study performs the
topology optimization by density approach. The ground structures based on Miura-ori tubes are dis-
cretized by bar-and-hinge models, where the folding and bending of panels are represented by rotational
springs, and the stretching of panels is expressed by bar elements. To ensure the connectivity of panels
as the Miura-ori tubes, the densities on panels are calculated by projecting design variables on nodes us-
ing the projection function that averages the weighted design variables on a neighborhood specified by a
circle with the filter radius. Furthermore, the density functions are computed by the Heaviside function
to obtain the valid configuration of Miura-ori tubes. Numerical examples of compliance minimization
demonstrate the design of the optimal connectivity of the Miura-ori tubes for lightweight deployable
structures.

Keywords: Miura-ori, origami tessellation, mechanism, bar-and-hinge model, topology optimization, ground
structure

1. Introduction
The construction of deployable structures offers several benefits, including rapid assembly and high
transportability due to their compact nature. Among deployable structures, rigid origami, in which rigid
panels are connected via creases, has a significant advantage in realizing folding and deployment mo-
tions. Because programmable motions by folding are scalable, rigid origami has potential applications
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at various scales, from the deployment of solar sails in space [1] to the construction of shelters [2, 3],
arches [4], and medical stents [5].

The concept of coupling origami tubes to make cellular materials has been explored to achieve distinctive
mechanical properties. Previous studies have introduced origami metamaterials with negative Poisson’s
ratios [6]. Additionally, highly stiff deployable structures, known as zipper-coupled tubes [7], have been
proposed based on the Miura ori. Thick Miura-ori tubes have also been connected along their creases,
resulting in stiffness comparable to zipper coupling [8]. Tachi-Miura polyhedra are also composed of
origami tubes [9], which lead to auxeticity [10], load-bearing capability [11], and high-efficiency energy
absorption [12, 13, 14]. To enhance the performance of these origami-based cellular structures, the
design frameworks to determine the connectivity of the units in the origami tessellation are necessary.

Topology optimization [15] has been employed in structural engineering to design the layout and connec-
tivity of the element. Topology optimization of deployable or foldable structures has been investigated,
e.g., crease pattern design of origami based on the ground structure approach [16, 17], foldable struc-
tures made of piecewise developable surfaces [18], and the scissor-type structures [19]. By contrast, to
our best knowledge, the design strategy to determine the optimum connectivity of the cellular origami
tessellation has not been established.

This study presents the topology optimization using the ground structures based on interleaved cellular
origami structures [20]. We employ interleaved cellular origami structures because they can be realized
as thick origami and have high stiffness [21]. The geometry is discretized by bar-and-hinge models,
which represent the folding and bending of panels by rotational springs and the stretching of panels by
bar elements. To ensure the connectivity of panels as the Miura-ori tubes, the densities on panels are
calculated by the projection of design variables on nodes using the projection function that averages
the weighted design variables on a neighborhood specified by a circle with the filter radius. Further-
more, the density functions are computed by the Heaviside function to obtain the valid configuration of
Miura-ori tubes. Numerical examples of compliance minimization demonstrate the design of the optimal
connectivity of the Miura-ori tubes for lightweight deployable structures.

2. Geometry of origami tessellation
2.1. Miura-ori tube

Dimension of Miura-ori unit cell is defined as shown in Fig. 1 (a). Length of Miura-ori a, b, the internal
angle of the parallelogram α and dihedral folding angle θ ∈ [0, π/2] provide one-degree-of-freedom
motions. The dimensions of unit cells are defined as:

Lx = 2b
cos θ tanα√

1 + cos2 θ tan2 α
(1)

Ly = 2a
√

1− sin2 θ sin2 α, (2)

H = 2a sin θ sinα, (3)

and
V = b

1√
1 + cos2 θ tan2 α

. (4)

The Miura-ori tubes are created by coupling Miura-ori to that mirrored along x-y plane as shown in Fig.
1 (b).
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Figure 1: Geometry of Miura-ori tube (a) Unit cell of Miura-ori sheet (b) Miura-ori tube created by
coupling mirrored Miura-ori sheet.

2.2. Tessellated structure

The coupling of the 180◦-rotated Miura-ori tubes along the creases leads to tessellation in the 3D space,
as shown in Fig. 2. The resulting cellular structures could rigidly deform from one flat state to another
because all interfaces for coupling thick Miura-ori tubes maintain local mirror symmetry. This tessel-
lation of thick Miura-ori tubes results in thickness accommodation of the interleaved cellular origami
structures proposed in [20]. Also, these cellular structures have high stiffness through the development
[21], which is similar to zipper coupling [7]. Therefore, we employ this tessellation as the ground
structure to ensure rigid foldability and easy fabrication.

θ＝0° θ＝30° θ＝60° θ＝90°

X
Z

Y

Figure 2: Coupling of the 180◦-rotated Miura-ori tubes along creases.

3. Formulation
3.1. Bar-and-hinge model

Ground structures generated by tessellation of Miura-ori tubes are discretized by bar-and-hinge models
[22], where the displacement u are represented by the extension of bar element e, the bending angle of
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panels and folding ΘB and ΘF as: 
C

JB

JF

u =


e

ΘB

ΘF

, (5)

where C, JB and JF are compatibility matrices, respectively. Furthermore, linear elastic constitutive
law is: 

KS 0 0

0 KB 0

0 0 KF




e

ΘB

ΘF

 =


t

mB

mF

, (6)

where KS , KB and KF are diagonal matrices represented by stretch and shear deformation of pan-
els characterized by bar elements, bending of panels characterized by hinge elements on the diagonals
of panels and the bending stiffness of creases characterized by rotational spring on the creases. Fur-
thermore, t, mB and mF are the tension of bar elements, bending moment of panels and creases,
respectively. In addition, the principle of virtual work provides:

f = Ku =


C

JB

JF


T

e

ΘB

ΘF

, (7)

The Eqs. (5)-(7) leads to the stiffness matrix K:

K =


C

JB

JF


T

KS 0 0

0 KB 0

0 0 KF




C

JB

JF

 = CTKSC+ JT
BKBJB + JT

FKFJF, (8)

The compatibility matrix of bar elements between nodes i and j is:

C =
1

L
[−nij ,nij ], (9)

where,

nij =
1

L
(xj − xi), L = ||xj − xi||, (10)

where, x is nodal coordinate. Furthermore, considering nodes j and k on the interface edge of two
triangular planes connecting by rotational springs, other nodes on triangles i and l, compatibility of
rotational spring be J is:

Ji =
||rkj ||

||mjik||2
mjik, (11)

Jj = −
||rkj ||

||mjlk||2
mjlk, (12)

Jk =

(
rij · rkj
||rkj ||2

m− 1

)
Ji −

rkl · rkj
||rkj ||2

Jj , (13)

Jl =

(
rij · rkj
||rkj ||2

m− 1

)
Jj −

rij · rkj
||rkj ||2

Ji, (14)

where, for p, q ∈ i, j, k, l,
rpq = xp − xq, (15)
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normal vectors of triangles composed of nodes j, i, k and j, l, k are [23]:

mjik = rji × rjk, mjlk = rjl × rjk. (16)

As a discretization in bar-and-hinge models, N5B8 illustrated in Fig. 3 (Panels of origami are represented
by 5 nodes and 8 bars) are employed to calculate the stiffness matrix. In addition, the diagonals of the
stiffness matrix KS , KB and KF [22].

Bar

Node

X
Z

Y

Figure 3: Schematic of bar-and-hinge model

The stiffness of bar elements to represent stretch and shear deformation are KS (i.e., diagonals of KS)
and thickness. KS is:

KS = EA/L, (17)

where, E, A and L are Young’s modulus and cross-sectional area and length of bars. To represent the
mechanical properties of the rectangle panels by N5B8 models, the length of rectangular panels W and
H , cross-sectional area of bars AX ,AY and AD are:

AX = t
H2 − νW 2

2H(1− ν2)
, (18)

AY = t
W 2 − νH2

2W (1− ν2)
, (19)

AD = t
ν(W 2 +H2)3/2

2HW (1− ν2)
, (20)

where ν and t are Poisson’s ratio and thickness of panels. These relationships can empirically imitate
the mechanical properties of skewed panels Miura-ori [22].

Diagonal component KB of stiffness associated with bending of panels[22] is:

KB = CB
Et3

12(1− ν2)

(
DS

t

)1/3

, (21)

where, DS is length of short diagonal and CB = 1/DS .
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3.2. Design variables

The distribution of panels in the design domain is expressed using the density ρe ∈ [0, 1] associated with
thickness t. According with SIMP method [15], thickness t of Miura-ori panels are:

t = ρe
pt0, (22)

where, t0 is the thickness of the Miura-ori, p is penalty.

To avoid the checkerboard of Miura-ori panels and retain the minimum connectivity of the Miura-ori
tubes, filter by [24]for design variables is introduced here. In addition, to obtain the valid geometry
represented by 0 or 1, the design valuables ϕj on nodes of Miura-ori are calculated using the Heaviside
function [25]. The design valuables on nodes of Miura-ori are filtered by: ϕi ∈ [−1, 1]

ρ̃e =

∑
j∈Se ϕjw(xj − xe)∑
j∈Se w(xj − xe)

, (23)

where, Se is set of nodes in the cube with radius Rmin with node center xe, w is weight function:

w(xj − xe) =

{
Rmin−||xj−xe||

Rmin
if xe ∈ Ωe,

0 otherwise
(24)

The density ρ̃e is calculated by using Heaviside function:

ρe =
tanh(βρ̃e)

2 tanh(β)
+ 0.5. (25)

3.3. Optimization problem

This study deals with the minimizing compliance defined as:

min : c(ρ1, . . . , ρN ) := U⊤KU (26)

subject to: KU = F (27)
N∑
e=1

ρe/N < Vf (28)

0 < ρmin < ρe < 1 (29)

where Vf is the volume fraction of panels on the ground structures and N is the number of panels in the
ground structure. Stiffness matrix K and displacement vector U are assembled as:

U⊤KU =

N∑
e=1

u⊤
SekSeuSe +

N∑
e=1

u⊤
BekBeuBe, (30)

Using density ρe, the local stiffness matrix associated with in-plane deformation is

kSe = ρpekS0, (31)

the local stiffness matrix associated with out-of-plane deformation is

kBe = ρ(8/3)pe kB0. (32)
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The optimization problem was solved by the Method of Moving Asymptotes [26].

3.4. Sensitivity analysis

The sensitivity of the objective function c with independent design variables ϕj is defined from the chain
rule:

∂c

∂ϕj
=

∂c

∂ρe

∂ρe
∂ρ̃e

∂ρ̃e
∂ϕj

, (33)

where
∂c

∂ρe
= −p(xe)

p−1u⊤
e kS0ue −

8

3
p(xe)

8

3
p−1u⊤

e kB0ue, (34)

∂ρe
∂ρ̃e

=
β sech2(βρ̃e)

2 tanh(β)
, (35)

and
∂ρ̃e
∂ϕj

=
w(xj − xe)∑

j∈Se w(xj − xe)
. (36)

4. Result
The geometry of the unit cell is defined by parameters a = c = 1, α = 55o. Young’s modulus, density,
Poisson’s ratio, and thickness of panels are 106, 1, 1/3, 0.01 used in [7], respectively. The scaling
factor of stiffness of hinges along creases is set as 40 used in [22]. Ground structures were created by
tessellation of the 180◦-rotated Miura-ori tubes shown in Fig. 4 under the θ = 60◦ folded states, where 1,
6.5 and 5.5 units in direction x-, y- and z-axis are used. The load was applied on the left edge shown in
Fig. 4 and the right edge was fixed. The penalty p = 3, the radius of filter Rmin = 3, and volume fraction
Vf = 0.6 are employed. The black panels shown in Fig. 4 were obtained by optimization. Owing to the
one-DOF motions of the tessellated structures, the optimum structures have the flat foldability shown in
Fig. 5.

Force

Ground structure

Optimum structure

Figure 4: Numerical examples of the topology optimization to determine the connectivity of the Miura-
ori tubes.
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θ=0°

θ=90°

Figure 5: Folding of the optimized structure by one-DOF motions of tessellated Miura-ori tubes.

5. Conclusion
This study introduced the topology optimization using foldable ground structures to design the deploy-
able structures. The ground structures were defined by tessellation of 180◦-rotated Miura-ori tubes,
which eases the connection of thick Miura-ori tubes. The connectivity of the Miura-ori tubes was opti-
mized by minimizing compliance using the sensitivity with respect to the panel thickness based on the
bar-and-hinge models. To ensure the connectivity of panels as cellular structures, the densities on panels
were calculated by projecting design variables on nodes using the projection function that averages the
weighted design variables on a neighborhood specified by a circle with the filter radius. Furthermore, the
density functions were computed by the Heaviside function to obtain the valid configuration of Miura-ori
tubes. Numerical examples of compliance minimization demonstrate the design of the optimal connec-
tivity of the Miura-ori tubes, which enables the construction of lightweight structures by connecting the
deployable units based on Miura-ori tubes. The proposed design framework will be applied to the design
of three-dimensional structures. In addition, the fabrication of the optimum structures using thick panels
and their evaluation will be performed to demonstrate the stability and durability of the structures.
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