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Abstract

There is a desire to to create a Eurocode part that describes the design principles, rules, guidelines,
and practices for tensioned membrane structures. This will have a significant impact on the design and
construction of tensioned membrane structures, for engineering consultants and contractors, for whom a
design code has not previously existed. The first stage in this process, the publishing of a technical spec-
ification [1], is approaching completion. Encompassing cable and membrane structure design within a
Eurocode framework, at first sight, might not be expected to generate significant complications. Perhaps
not immediately obvious, is that the calibration of the partial factors is undertaken within the context
of the overarching EC0, where structural safety is defined in terms of a minimum probability of failure
(or safety index) rather than a direct measure of a physical engineering quantity (e.g., stress). There
is, therefore, a requirement to calculate (or estimate) the probability of failure for tensioned membrane
structures. For a structural system such as a tensioned membrane structure that possesses geometrically
nonlinear behaviour, and is constructed from nonlinear elastic and nonlinear plastic composite materials,
calculating the probability of failure is a major challenge. This paper outlines some of the challenges,
and explores the potential use of adaptive importance sampling Monte Carlo simulation to overcome
(some of) them.

Keywords: Membrane structures, structural reliability analysis, adaptive Monte Carlo, importance sampling, prob-
ability of failure.

1. Introduction
The basic engineering principle is to provide an efficient design that is safe. Eurocode 0 provides mini-
mum safety metrics for the built environment. The metrics are normally stated as safety indices, which
may also be expressed as probabilities of failure. For most structural engineering applications, the mini-
mum safety index is 3.8, with a corresponding probability of failure, pf , of ≤ 7× 10−5. With structural
resistance typically defined by material properties (e.g., strength and stiffness) and geometry (i.e., at
element and structure levels), and load effects determined from a range of environmental factors, it is
clear that the amount by which the structural resistance exceeds the correspond load effects (e.g., stress,
strain, displacement, etc.) is uncertain, and changes over time (e.g., Fig. 1).

In existing application-specific Eurocodes (e.g., 2 onwards), the margin between resistance and load
effect is maintained by the use of partial factors (normally ≥ 1.0), either dividing (resistance) or mul-
tiplying (load effect) nominal values. The partial factors are derived from a combination of the (target)
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Figure 1: Resistance (R), and load effect (S) varying with time. Acknowledgement [2]

safety index (e.g., 3.8), and the statistics associated with the resistance and load effect design variables.
It is the combination of statistically low resistance with statistically high load effect that determines the
safety index or the probability of failure. As with all basic design problems, the challenge is selecting
the material and geometry combination that provides sufficient resistance, where ”sufficient” is defined
in Eurocode 0 via the minimum safety index. The analysis challenge is a structural reliability problem
- calculating the safety index or probability of failure for a candidate design resistance given a prior
load effect. In short, we seek the probability that the resistance is < the load effect, for all possible
combinations (e.g., Fig. 2).

Figure 2: Basic structural reliability problem. Acknowledgement [2]

The ultimate limit state design of cable and membrane structures is normally based on a combination of
factored loads and a type of permissible stress principle, with the material strength reduced by factors
considering phenomena such as tear propagation and the effects of environmental factors and impacts.
A similar approach is adopted for serviceability criteria. The design choices are focussed on material
strength, prestress, and surface geometry, with elastic stiffness playing a more minor role.
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Encompassing cable and membrane structure design within a Eurocode framework, at first sight, might
not necessarily be expected to generate significant complications. After all, application of the framework
to steel, concrete, and timber structural systems, for example, in which partial factors are applied to
load effect and resistance (e.g., material and section properties), appears straightforward, and account
for inherent (aleatoric) uncertainties. Perhaps less obvious, is that the calibration of the partial factors
is undertaken within the context of the overarching Eurocode 0, where structural safety is defined in
terms of a minimum probability of failure (or safety index) rather than a direct measure of a physical
engineering quantity (e.g., stress).

Predicting the probability of failure (or safety index, in standard normal space, N(0,1)) requires the
writing of a performance statement (limit state) in terms of resistance and load effect, with their relative
proximity a measure of the probability. Unlike geometrically linear structural systems (which may also
be materially non-linear, i.e., elasto-plastic) the definition of resistance and load effect for geometrically
nonlinear structural systems (e.g., cable and membrane structures) may be neither clear nor constant. For
example, prestress contributes to the total stress as a load effect, but at the same time provides stiffness,
and is also, therefore, a resistance term. Different partial factors could be applied to each component, but
this requires an understanding of how they contribute to the complete structural system, and completion
of a calibration process. To ensure rigour, both demand some form of structural reliability analysis.

The (deterministic) structural analysis of a tension structure is computationally expensive. A reliabil-
ity analysis adds a further level of computational cost and complexity. First-order reliability methods
(FORM) may provide faster solution options, but require limit state derivative information (which may
not be available), and assume a linear limit state (which is not normally the case for nonlinear structural
systems). Second order methods (SORM) improve on the limit state approximation, but demand curva-
tures. The minimum probability of failure permitted by Eurocode 0, 7 × 10−5, requires an infeasible
107–108 structural analyses per limit state to achieve a reasonable level of accuracy. Adaptive Monte
Carlo simulation with importance sampling may offer a potentially effective, practical solution approach
to the problem of calculating the probability of failure (and safety index) of highly non-linear tension
structures.

This paper outlines the principles of adaptive Monte Carlo simulation with importance sampling, demon-
strating how small probabilities can be estimated using low numbers of computations. The method is
applied to the analytical analysis of a suspended cable, illustrating how probabilities of failure consistent
with the expectations of Eurocode 0 may be estimated. The aim is to be able to predict the probability
of failure using 10s of structural analyses rather than millions.

2. Exemplar mathematical model of a highly nonlinear tension structure
As a 2-D continuum in 3-D space, a tensioned membrane represents a complex solid mechanics compu-
tational analysis problem, defined by multi-dimensional differential equations. Some simplifications are
possible for a very small number of special cases, but, in general, the solution of the problem differential
equations requires the use of (approximating) numerical methods, such as the finite element method, and
alternative variants. The scope of this paper does not include consideration of these methods. A cable
provides a useful 1-D (in 2-D space) analogue to some of the behaviour of a tensioned membrane when
subjected to external loading. In particular, it describes strongly geometrically nonlinear behaviour, with
aspects very similar to those of its 2-D membrane counterpart along the principal axes. Analytical so-
lutions describing displacement and axial tension have been developed for suspended cables subjected
to distributed and concentrated loads [3]. The adoption of an analytical solution as an exemplar math-
ematical model containing the required geometric nonlinearities, permits validation using basic Monte
Carlo simulation, which would otherwise be infeasible for a continuum-based membrane model. The
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aim in this paper is to establish if a tractable (e.g., total time of computation) approach can be identified
to calculate probabilities of failure of the order of 10−5. This capability is required if the principles of
Eurocode 0 are to be applied to the design of tensioned membrane structures.

2.1. Response of a cable to a point load

The exact analysis of simple suspended cable problems leads to cumbersome solution methods. Simpli-
fications can be made when the unloaded (self-weight only) profile of the cable is flat with a relatively
low sag. Importantly for current study, this approximate theory provides explicit, consistent methods for
finding the static response to applied loads accurate to the third order of small quantities. We consider
the profile of a uniform cable hanging under its own weight between two supports positioned at the same
level. If this profile is flat, so that the ratio of sag to span is ≤1:8, the differential equation governing
vertical equilibrium of an element is accurately specified by,

H
d2z

dx2
= −mg, (1)

for which the relevant solution is,

z =
1

2
x(1− x), (2)

with the non-dimensionalised variables; x = x/l, in which l is the span of the cable, and z = z/(mgl2/H),
with mg the cable weight per unit length, and H the horizontal component of cable tension, given by,

H =
mgl2

8d
, (3)

and d is the sag of the cable, and the cable length is,

L =

∫ l

0
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1 +

(
dz
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)2
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)4

...

}
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In these calculations, the effects of the cable stretch are included. The bending stiffness of the cable
is assumed to be insignificant. As a starting point, we consider a cable with a point load applied at a
distance x1 from the left support (Fig. 3). Assuming that deformations are sufficiently small so that the
profile remains shallow, vertical equilibrium at a cross-section of the cable requires that,

(H + h)
d

dx
(z + w) = P

(
1− x1

l

)
+

mgl

2

(
1− 2x

l

)
, (5)

for 0 ≤ x < x1, where w is the additional vertical cable deflection and h is the increment in horizontal
component of cable tension generated by the application of P . Expanding and simplifying 5 (self-weight
terms cancel), then,

(H + h)
dw

dx
= P

(
1− x1

l

)
− h

dz

dx
, (6)

with a similar definition obtained for x1 ≤ x < l. Integrating 6 directly whilst satisfying the boundary
conditions, the dimensionless equation for the additional vertical deflection is obtained as,

w =
1

(1 + h)

{
(1− x1)x− h

2P
x (1− x)

}
, 0 ≤ x < x1, (7)
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with, w = w/(Pl/H), h = h/H , and P = P/mgl. To complete the solution h is required. Hooke’s law
is used to link changes in the cable tension to changes in the cable geometry when the cable is displaced
from its original equilibrium (self-weight) profile. If ds is the original length of an element of the cable,
and EA the axial stiffness, then the cable equation for the element is,

h (ds/dx)3

EA
=

du

dx
+

dz

dx

dw

dx
+

1

2

(
dw

dx

)2

. (8)

Integrating 8 by parts, and making use of 7, yields a dimensionless cubic equation for h, as,

h3 +
(
2 + λ2/24

)
h2 +

(
1 + λ2/12

)
h − λ2x1 (1− x1)P (1 + P) /2 = 0, (9)

with λ2 = (mgl/H)2l/(HLe/EA), and Le ≈ l(1+8(d/l)2). 9 has only one real root (Descarte’s rule),
which is the required value of h. h is multiplied by H to give the increment of horizontal component
of axial cable force, which, if evaluated at centre span, and given symmetrical loading and support
conditions, corresponds to the tensile force in the cable.

The purpose of providing a relatively detailed background to this exemplar mathematical model, is to
highlight the complexity and nonlinearity (in the form of the roots of a cubic equation) of the solution
for a cable, the level of which is increased when considering a continuum-based membrane. It should
be further noted at this stage that the equilibrium configuration of the cable with a point load is not
differentiable at the position of the load.

Figure 3: Definition diagram for a point load on a cable. Acknowledgement [3]

2.2. Response of a cable to a uniformly distributed load

Following the principles of the point load case, a similar mathematical model is described for a cable
with a uniformly applied load, of intensity p per unit length of span, applied from x = x2 to x = x3 (see
Fig. 4). Most relevant to structural design, of the three different regions of the span, the dimensionless
equation for the additional vertical cable deflection for the loaded part is provided, and written as,

w =
1

(1 + h)

[
1

2

(
x23 − x22

)
(1− x)− h

2p
x (1− x)

]
, x2 ≤ x ≤ x3 (10)

with, w = w/(pl2/H), h = h/H , x = x/l, and p = p/mg.

For a uniformly distributed load (including part-span), dw/dz is continuous along the span. In this case,
the equivalent of 8 becomes,

hLe

EA
= −

∫ l

0

(
d2z

dx2
+

1

2

d2w

dx2

)
wdx, (11)
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with the corresponding dimensionless cubic in h obtained as,
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(12)

Again, h can be calculated using the single positive root obtained from 12. For a UDL acting over the
full span, x2 = 0, with x3 = l. As expected, 12 converges towards 9 as x3− x2 → 0. This concludes the
outline of the mathematical model.

Figure 4: Definition diagram for a uniformly distributed load on a cable. Acknowledgement [3]

3. Solving the structural reliability problem using adaptive Monte Carlo simulation with
importance sampling

3.1. Basic Monte Carlo simulation

Monte Carlo simulation (MCS) performs numerical tests on the limit stage, G(x), with x the vector
of design variables (e.g., uncertain model parameters such as material properties, loading, etc.), by
sampling seeking x and evaluating G(x) to identify G(x) < 0. The number of instances of G(x) < 0

is summed and divided by the total number of samples to give the probability that G(x) < 0, which
corresponds to the probability of failure, pf given the definition of G. Expressed mathematically,

pf =

∫ G(x)<0

−∞
f(x)dx, (13)

where f(x) is the joint probability density function (PDF) describing the basic variables x. The integral
upper limit, G(x) < 0, in 13 can be conveniently implemented with the use of the indicator function,
I(x), such that I(x) = 1 when G(x) < 0, and zero otherwise, giving,

pf =

∫ +∞

−∞
I(x)f(x)dx. (14)

Noting that the mean, µ, of a set of numbers, x, with PDF f(x), is defined as,

µ =

∫ +∞

−∞
xf(x)dx, (15)
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comparing 14 with 15, then we obtain the formalised definition (assuming all outcomes are normally
distributed) for a finite number of samples, n,

pf ≈ µ (I(x)) ≈ 1

n

n∑
i=1

I(x). (16)

3.2. A refinement of basic Monte Carlo simulation

The indicator function I(x) is rather crude in that it doesn’t provide any information about the proximity
of the solution to the limit state, and, therefore, no corresponding refinement of the estimate of pf . An
improved estimate of pf may be made by incorporating the limit state constraint (written in terms of
resistance R and load effect S) using the joint PDF, fRS , and the cumulative density function (CDF) of
R, FR, as in,

pf = p (R− S < 0)) =

∫ +∞

−∞

∫ (R−S)<0

−∞
fRS(x)dx =

∫ +∞

−∞
FR(x)fS(x)dx. (17)

Comparing 14 and 16, with 17, then,

pf =

∫ +∞

−∞
FR(x)fS(x)dx ≈ µ (FR(x)) ≈

1

n

n∑
i=1

FR(x), (18)

with samples taken from fS(x).

3.3. Monte Carlo simulation with importance sampling

In basic Monte Carlo simulation, samples are naturally centred around the means of the variables x.
Using importance sampling, this location is shifted to the ’most probable (failure) point’ (MPP), e.g.,
the location on the limit state describing the most onerous values of resistance and load effects, leading
to failure (Fig. 5). The importance sampling function, hv(x) multiplies and divides the integral in 17,

Figure 5: Sampling examples for basic and importance sampling MCS, respectively.

leaving the numerical value of pf unchanged, but importantly, shifting the sampling of the variables
from fs to hv, as in,

pf =

∫ +∞

−∞

[
FR (v)

fS (v)

hv(v)

]
hv(v)dv ≈ µ

(
FR(v)

fS(v)

hv(v)

)
≈ 1

n

n∑
i=1

(
FR(v)

fS(v)

hv(v)

)
(19)

The inclusion of FR(x) in 19 provides the potential for greater numerical efficiency (e.g., the need for
fewer samples) compared with basic MCS. However, the availability of FR(x) is not assured. For the
current cable example (and tensioned membranes in general), the coupling of terms in the resistance
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and load effects (e.g., displacement and axial load/stress) prevent the explicit analytical definition of
FR(x). A numerical approximation of FR(x) could be generated, but this would require a large number
of samples, defeating the aim. In this case, referring to 14, 19 will be used in the less refined form,

pf =

∫ +∞

−∞

[
I(v)

fS(v)

hv(v)

]
hv(v)dv ≈ µ

(
I(v)

fS(v)

hv(v)

)
≈ 1

n

n∑
i=1

(
I(v)

fS(v)

hv(v)

)
(20)

The statistics of hv(x) (e.g., mean, µ(x), and standard deviation, σ(x), [if assumed to be normally
distributed]), need to be chosen. Their choice impacts the accuracy of the predicted probability, pf ,
and rate of convergence. Both µ(x) and σ(x) may be found to be of similar significance. The design
point (an estimate of the MPP) from a first-order reliability analysis (FORM) can provide a reasonable
candidate for µ(x). Since FORM generates only a single design point, standard deviation information is
not available. The standard deviations from the basic variables x may be tentatively adopted for hv(x).
The importance sampling function may be adapted using the values of the design values x for which
G(x) < 0 to generate new values of µ(x) and σ(x) to describe hv(x).

FORM typically transforms the limit state into standard normal space (e.g., N [0, 1]), and seeks to find
the minimum distance from the origin (e.g., the means of the transformed x) to the limit state. This
distance equates to the safety index, β, from which the pf can be calculated using the inverse CDF (e.g.,
pf = Φ(−β)). Effectively, FORM is an optimisation problem. Whilst several methods can be used,
the most common are gradient-based approaches, requiring derivatives of the limit state function with
respect to the design variables x. If analytical derivatives are not readily available, as will typically be
the case for analysis codes used for the design of tensioned membranes, finite difference approximations
may provide acceptable alternatives. With the analytical cable solution requiring the roots of a cubic
equation, finite differences are used to estimate the gradients of the limit state in this case.

4. Estimating pf of a suspended cable
A cable of span l = 100m is suspended between supports at the same level. Young’s modulus, E,
and cross-sectional area, A, are assumed to be 1.5 × 108 kN/m2 and 5 × 10−4 m2, respectively, giving
EA = 7.5× 104 kN. The mass of the cable, m, is 4 kg/m. The calculation point for h and w, x, is taken
as mid-span. In what follows, two input parameters are assumed to be basic variables, and the resistance
of the cable is taken to be deterministic. This simple scenario permits a clearer initial assessment of the
approach to calculate pf at this stage.

4.1. Uniformly distributed load

A uniformly distributed load (UDL) is applied to the full span of the cable, such that x2 = 0 and
x3 = 100m. Load p is assumed to be a basic variable, with a mean value of 0.5 KN/m and a coefficient
of variation (CoV) of 10%, such that p =: N [0.5, 0.05] kN/m. The initial sag of the cable, d, is also
assumed to be uncertain, with µ (p) = 2 m and a CoV of 5%, giving d =: N [2, 0.1] m. The limit state
is based on the mid-span cable force, with a deterministic resistance of 239 kN.

The starting point is to estimate the MPP from FORM, with derivatives of the limit state estimated
using forward finite differences and 1% perturbations. Initial values for the standard normal variables
(y1 → p, y2 → d) were assumed to be at the means. The large magnitude sensitivities of the limit state
with respect to the basic variables resulted in slow convergence, which was accelerated by extrapolating
estimates of the standard normal variables. With (discontinuously) converged values for y1 and y2 of
3.80 and −0.43, respectively, after 11 iterations, the corresponding limit state, g(y), was close to the
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required value of zero (0.06 kN) compared with 47.4 kN at the mean values of the basic variables (e.g.,
y = 0). Normalised derivatives indicated that uncertainty in the applied load dominated the failure of
the cable, in this case. The associated design point, (p∗, d∗) was (0.69 kN/m, 1.957 m) with a safety
index of β = 3.83, giving pf ≈ 6.4× 10−5.

For the Monte Carlo simulation with importance sampling (MCS-IS), the mean values in hv(v) are
assumed to be (p∗, d∗) from the FORM analysis (e.g., (0.69 kN/m, 1.957 m)), and in the absence of other
data, the CoVs of the basic variables are retained to calculate the corresponding standard deviations.

At this point, it is worth noting that for basic Monte Carlo simulation (bMCS), the minimum probability
that can be calculated is 1/n, with n the number of samples (e.g., for n = 100, pmin = 0.01, etc.).
Therefore, for, e.g., the EC0 target probability of 7× 10−5, the minimum number of samples to identify
a single instance of G < 0 is 1/7 × 10−5 = 15, 000, with the accurate estimate of pf requiring several
orders of magnitudes more (as evidenced below).

To explore the stated aim of this study, just 20 samples are assumed with MCS-IS. (20 analyses re-
mains a large number in the field of tensioned membranes, but is a significant reduction over bMCS).
A set of 20 samples of the basic variables based on the hv(v) described above, generated the estimate
pf ≈ 3.64× 10−5.

This result appears to be infeasible/improbable given observations in the preceding paragraph. However,
comparing 16 with 20, it is clear that the ratio fS(v)

hv(v)
plays a significant role in scaling the outcomes from

a Monte Carlo-type simulation. As a ratio of probabilities, fS(v)
hv(v)

may be viewed as a type of likelihood.
v is the vector of samples of the basic variables (p and d in the current example), obtained from a uniform
normal distribution using (p∗, d∗). hv(v) is the probability of obtaining the sampled values of v. These
probabilities are typically in the range 10−1 − 10−2 as expected given the mean and standard deviation
of v are used to define hv(v). In contrast, fS(v) is the probability of v given the statistics for S. Since v

is sampled around the MPP, fS(v) has a much broader range of smaller probabilities; e.g., 10−5−10−10.
fS(v), provides the opportunity to return much smaller values of probability despite very small numbers
of samples. For the first set of 20 samples, 11 generated instances of G < 0. Two further sets of 20
samples returned 10 and 8 instances, with corresponding failure probabilities of pf ≈ 1.71× 10−5 and
pf ≈ 5.98 × 10−5, respectively, giving an average over the three sets of pf ≈ 3.78 × 10−5. These
outcomes are based on mean values for hv(v) taken from (p∗, d∗) with standard deviations calculated
using the original data CoVs. The mean and standard deviation for hv(v) can be re-estimated from the
values of (p, d) that generated instances of G < 0 from the FORM starting point. This adaptive MCS-
IS aims to improve the estimated pf by refining the importance sampling around the predicted MPP. A
further six simulations of 20 samples each combine to give an updated pf ≈ 3.87×10−5. The associated
CoV of 124.9% indicates a high level of variability associated with such a small sample size.

A basic MCS (programmed in MATLAB) with 2, 000, 000 ≤ n ≤ 200, 000, 000 (Table 1) suggests that
the truer pf ≈ 7.00× 10−5 with CoV ≈ 5.0%. Comparing predictions from FORM (pf ≈ 6.4× 10−5),
adaptive MCS-IS (pf ≈ 3.87 × 10−5), and basic MCS (pf ≈ 7.00 × 10−5), it would be sufficient to
adopt the FORM solution, in this case. The difference between the FORM and basic MCS predictions
indicate a small amount of nonlinearity in the limit state, with the MCS-IS scheme with only 20 samples
unable to resolve this detail.

4.2. Patch load

The UDL is replaced by a short (1m long) patch load (with x2 = 49.5 and x3 = 50.5m) of uncertain
mean intensity 20 kN/m and a CoV = 10%. The resistance of the cable, R, is assumed to be determin-
istic, with R = 182.9 kN. All remaining parameters are the same as the UDL case. The response of the
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Table 1: Monte Carlo simulation convergence - UDL

n pf CoV
20× 100, 000 = 2, 000, 000 6.5000× 10−5 34%
100× 20, 000 = 2, 000, 000 7.1000× 10−5 95%

20× 1, 000, 000 = 20, 000, 000 7.2350× 10−5 10%
20× 10, 000, 000 = 200, 000, 000 7.0105× 10−5 4.8%

20× 10, 000, 000 = 200, 000, 000 (repetition) 6.9990× 10−5 5.2%

cable to the patch load is a combination of a point load and UDL as defined by 12. In this case, using
FORM fails to identify the MPP. Starting at the mean values of the basic variables, G = 37.4kN , which
is less than the UDL case, suggesting a potentially higher pf . In reverse to the UDL case, the sensitivities
of G with respect to the basic variables are dominated by the initial cable sag, d, and not p. At G = 0.91

kN, and, therefore, close to limit state, β = 8.8, equivalent to an equally unrealistic pf ≈ 8×10−19. The
failure of the FORM algorithm is in contrast to the UDL case, with a suggestion that the solution for the
increment of the horizontal component of the cable force, h, is not sufficiently smooth, and, therefore,
non-differentiable. Selecting a realistic value of β from the FORM iterations (β = 3.7), the correspond-
ing (assumed approximation to the) MPP gives (p, d)∗ = (21.4 kN, 1.63 m) on which to base hv(v)

with the original CoVs for the MCS-IS. From 20 samples, this hv(v) generated only a single instance of
G < 0. Further exploration of hv(v) provided a highest estimate of pf ≈ 1.54 × 10−6, a considerable
underestimate of the truer pf ≈ 6.96× 10−5 (MCS with 20× 10, 000, 000, CoV 4.4%).

Noting that confidence in the FORM estimate of the MPP for this case is low (not reliable or cor-
rect), sampling hv(v) based on a uniform distribution in N(0, 1) with an uncertain (highly) MPP, may
compound an inability to predict the pf with sufficient accuracy when using very few samples. In
this context, Latin Hypercube Sampling (LHS), which improves the coverage of the input space, using a
stratified scheme that is rather more disruptive in generating samples compared with the uniform N(0, 1)

approach [4], may prove an effective alternative scheme. Sampling hv(v) using adaptive LHS (initial
(µp = 26, µd = 1.45,CoVs = 5%) with a total of 26 samples (of which 15 indicated G < 0), the aver-
age pf ≈ 8.94 × 10−5. Given the low number of samples, this represents a very reasonable prediction
of the truer value of pf ≈ 6.96 × 10−5 obtained from 200, 000, 000 basic Monte Carlo simulations. It
should be noted that the use of arbitrary initial estimates for hv(v) may lead to invalid fS(v)/hv(v) > 1.

5. Conclusions
This study demonstrates the potential of Monte Carlo simulation with importance sampling to predict the
pf of highly geometrically nonlinear structures using very small numbers of limit state (design scenario)
evaluations. Care must be taken in defining hv(v) (with the MPP from FORM not necessarily providing
a good candidate starting point) and in the application of the method used to sample hv(v), particularly
when defining µs and CoVs.

References
[1] CEN/TC-250-WG5, TS 19102:2023-1Design of tensioned membrane structures. CEN, 2023 DRAFT.

[2] R. E. Melchers, Structural Reliability Analysis and Prediction. Wiley, 2017.

[3] H. M. Irvine, Cable Structures. Penerbit ITB, 1988.

[4] O. D. A. Olsson G. Sandberg, “On latin hypercube sampling for structural reliability analysis,”
Structural Safety, vol. 25, pp. 47–68, 2003.

10


	1. Introduction
	2. Exemplar mathematical model of a highly nonlinear tension structure
	2.1. Response of a cable to a point load
	2.2. Response of a cable to a uniformly distributed load

	3. Solving the structural reliability problem using adaptive Monte Carlo simulation with importance sampling
	3.1. Basic Monte Carlo simulation
	3.2. A refinement of basic Monte Carlo simulation
	3.3. Monte Carlo simulation with importance sampling

	4. Estimating pf of a suspended cable
	4.1. Uniformly distributed load
	4.2. Patch load

	5. Conclusions

