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Abstract 

Structural configurations exhibiting symmetry properties (and hence belonging to a symmetry group) may 

be conveniently studied using the mathematics of group theory, which allows the space of the problem to be 

decomposed into independent symmetry-adapted subspaces. Within the domain of structural mechanics, 

group theory has been successfully employed to simplify problems of the bifurcation, stability, statics, 

kinematics and vibration of symmetric configurations of space frames, space truss domes, double-layer and 

triple-layer space grids, plates and cable-net systems. Besides significantly reducing computational effort, 

group theory affords deeper insights on structural behaviour, and a better understanding of complex structural 

phenomena (for instance, it explains why certain natural frequencies repeat in symmetric vibrating systems). 

The key to group-theoretic simplification is the decomposition of the space of the symmetric problem into 

independent subspaces that are spanned by symmetry-adapted variables, allowing the problem to be broken 

down into smaller independent problems that are easier to study, or easier to analyse. Symmetry-adapted 

variables are generated by applying special operators (called idempotents of the symmetry group) on the 

normal variables of the problem. However, for degenerate  subspaces of a symmetry group (i.e. subspaces 

associated with doubly-repeating or multiply-repeating solutions), the associated idempotents do not 

sufficiently decompose the problem. The purpose of this paper is to propose, for certain symmetry groups, 

new operators that fully decompose such subspaces. These operators have never been reported in the 

literature before. We believe this contribution significantly advances group-theoretic computational analysis. 

Keywords: computational analysis, symmetry, group theory, vector-space decomposition, idempotent, symmetry-adapted 

variable, eigenvalue analysis 

1. Introduction 

Symmetry is very common in structural engineering and architecture. Besides its aesthetic appeal, 

symmetry can enhance the functionality of space. From a structural point of view, symmetry can be 

taken advantage of to simplify the analysis of the system, or to reduce the costs of assembly of the 

system. However, symmetry also attracts complications in structural behaviour, such as the occurrence 

of multiple critical points in bifurcation analysis (where two or more eigenvalues vanish 

simultaneously), and the coincidence or near-coincidence of eigenvalues in problems of the vibration or 

buckling of structures, both of which pose difficulties of numerical ill-conditioning of solution 

procedures in computational schemes [1, 2]. Suitable tools are needed to facilitate the study of structural 

configurations with higher-order symmetries, and better understand the associated complex phenomena.  

The set of symmetry elements describing the symmetry of a physical configuration constitutes a 

symmetry group. Group theory provides the mathematical tools for the study of such systems [3, 4]. 

This allows the space of the problem to be decomposed into independent symmetry-adapted subspaces. 

Within the domain of structural mechanics, group theory has been successfully employed to simplify 



Proceedings of the IASS Symposium 2024 

Redefining the Art of Structural Design 
 

 

 2 

 

the study of the bifurcation of space trusses [1, 5], the statics of space frames [6, 7] and pin-jointed 

trusses [8], the vibration of cable nets [9, 10], layered space grids [11] and plates [12], the kinematics of 

skeletal structures [13-15], and the stability of frames [16, 17] and origami [18]. Applications in 

computational structural mechanics were highlighted in a survey that was conducted fifteen years ago [19].   

Besides significantly reducing computational effort, group theory affords deeper insights on structural 

behaviour, and a better understanding of complex structural phenomena (for instance, it explains why 

certain natural frequencies repeat in symmetric vibrating systems [20, 21]). The key to group-theoretic 

simplification is the decomposition of the space of the symmetric problem into independent subspaces 

that are spanned by symmetry-adapted variables, allowing the problem to be broken down into smaller 

independent problems that are easier to study, or easier to analyse. By separating the computation of 

coincident eigenvalues into independent subspaces that “do not see each other”, group theory also 

circumvents the numerical problems associated with computing closely-spaced or coincident solutions 

in the full space of the problem [1, 2]. Group theory effectively untangles the symmetries.     

According to the representation theory of symmetry groups [3, 4], each independent symmetry-adapted 

subspace 𝑆 is associated with an irreducible representation Γ of the symmetry group; if the symmetry group 

has 𝑘 irreducible representations, then the number of independent symmetry-adapted subspaces will be 𝑘. In 

turn, each irreducible representation Γ(𝑖) (𝑖 = 1, 2, … , 𝑘) of the symmetry group is associated with a unique 

idempotent 𝑃(𝑖) (𝑖 = 1, 2, … , 𝑘), which is a very specific linear combination of the symmetry elements of 

the group, having the special property of nullifying all vectors that do not belong to the subspace 𝑆(𝑖) of the 

irreducible representation Γ(𝑖), and selecting only vectors that belong to the subspace S(𝑖). Idempotents of 

any symmetry group satisfy the relation 𝑃(𝑖)𝑃(𝑖) = 𝑃(𝑖) for all 𝑖. More importantly, they have the 

property 𝑃(𝑖)𝑃(𝑗) = 0 if 𝑖 ≠ 𝑗 (i.e. idempotents of different subspaces are orthogonal to each other). 

Each subspace has its own characteristic symmetry properties which distinguish it from other subspaces. As 

an example, the symmetry group 𝐶1𝑣 describing the symmetry of configurations with one reflection plane 

(such as a simply supported beam with two equal point loads 𝑃 equidistant from the centre of the beam) has 

two irreducible representations Γ(1) and Γ(2) with corresponding idempotents 𝑃(1) = 0.5(𝑒 + 𝜎𝑣) and 

𝑃(1) = 0.5(𝑒 − 𝜎𝑣), the symmetry elements  {𝑒, 𝜎𝑣} denoting the identity operation and reflection operation 

respectively. The idempotent 𝑃(1) and 𝑃(2), by operating on the normal variables of the problem, split the 

space of the problem into a symmetric subspace 𝑆(1) and an antisymmetric subspace 𝑆(2) respectively.     

Taking the idempotent 𝑃(𝑖) corresponding to the irreducible representation Γ(𝑖) (and associated with the 

subspace 𝑆(𝑖)),  and applying this to each of the 𝑛 normal variables of the problem, we obtain 𝑛 symmetry-

adapted variables, of which say 𝑟𝑖 are independent. The 𝑟𝑖 independent symmetry-adapted variables may be 

taken as the basis vectors of subspace 𝑆(𝑖). Thus, subspace 𝑆(𝑖) is of dimension 𝑟𝑖, where  𝑟𝑖 ≪ 𝑛 ; the sum 

of the dimensions of all 𝑘 subspaces is equal to 𝑛: that is, 𝑟1 + 𝑟2 + ⋯ +  𝑟𝑘 = 𝑛 [9, 11, 20, 22]. 

For any 1-dimensional irreducible representation Γ(𝑖) of a symmetry group (the dimension of Γ(𝑖) is given 

by the first character of Γ(𝑖) in the character table [3, 4] of the group), the dimension 𝑟𝑖 of the associated 

subspace 𝑆(𝑖) is the smallest possible (i.e. no further decomposition of subspace 𝑆(𝑖) is possible). However, 

for an 𝑚-dimensional irreducible representation (where 𝑚 can be 2, 3, 4 or 5), the decomposition yielded 

by the application of idempotent 𝑃(𝑖) results in a subspace 𝑆(𝑖) that can still be decomposed further. Such 

degenerate subspaces are associated with repeating solutions (which, in the case of eigenvalue vibration 

problems, are repeating natural frequencies); the degree of repetition is equal to 𝑚. Irreducible 

representations of dimension 1 or 2 are typically associated with structural configurations belonging to 

cyclic (𝐶) and dihedral (𝐷) symmetry groups, whereas those of dimension greater than 2 are only 

encountered in the analysis of tetrahedral (𝑇), octahedral (𝑂) and icosahedral (𝐼) configurations.  

Figure 1 shows double-layer grids (in plan and elevation) belonging to symmetry groups 𝐶3𝑣 and 𝐶6𝑣, 

which characterise configurations with the symmetries of an equilateral triangle (3 rotations and 3 

reflections) and a regular hexagon (6 rotations and 6 reflections). One of the three irreducible 

representations of symmetry group 𝐶3𝑣 is 2-dimensional (the other two being 1-dimensional), while two 

of the six irreducible representations of symmetry group 𝐶6𝑣 are 2-dimensional (the other four being 1-



Proceedings of the IASS Symposium 2024 

Redefining the Art of Structural Design 
 

 

 3 

 

dimensional) [11]. Thus, symmetry group 𝐶3𝑣 has two normal subspaces (denoted by 𝑆(1) and 𝑆(2)) and 

one degenerate subspace (denote by 𝑆(3)), while symmetry group 𝐶6𝑣 has four normal subspaces (denoted 

by 𝑆(1), 𝑆(2), 𝑆(3) and 𝑆(4)) and two degenerate subspaces (denoted by 𝑆(5) and 𝑆(6)); the degenerate 

subspaces of both symmetry groups feature doubly-repeating solutions.    

Clearly, if further decomposition of a degenerate subspace can be achieved, this would allow the doubly-

repeating (or multiply-repeating) solutions of the subspace to be computed more easily. Operators that 

further decompose the degenerate subspace 𝑆(5) of symmetry group 𝐶4𝑣 (which describe the symmetry 

of a square) were first presented by the first author in earlier work [11], and have subsequently been 

successfully applied to the analysis of plates [12], plane grids [22] and plane frames [17], allowing the 

doubly-repeating eigenvalues of subspace 𝑆(5) to be obtained by consideration of only one of its semi-

subspaces 𝑆(5,1) and 𝑆(5,2). As far as the authors are aware of, operators that further decompose the 

degenerate subspaces of symmetry groups 𝐶3𝑣 and 𝐶6𝑣 are not available in the literature. In this paper, 

we will present unique operators for the automatic decomposition of the degenerate subspace of 

symmetry groups 𝐶3𝑣, and illustrate their application by reference to the double-layer space grid in 

Figure 1(a). Vibration modes of the space grids shown in Figure 1 were explored in earlier work [11],   

but without the benefit of these operators. This is the first time such operators have been proposed. Their 

usefulness go beyond structural mechanics, as they can also be used to simplify problems with this type 

of symmetry in material science, physics and chemistry. Owing to space constraints, only key results 

will be presented in this paper; derivational details will be included in a journal version of this paper. 

     

Figure 1: Space grids with 𝐶𝑛𝑣 symmetry: (a) triangular grid (𝐶3𝑣 symmetry); (b) hexagonal grid (𝐶6𝑣 symmetry) [11]. 

2. Idempotents of symmetry group C3v 

Symmetry operations are transformations which bring an object into coincidence with itself, and leaves 

it indistinguishable from its original configuration. In the double-layer grid shown in Fig. 1, nodes 1 to 

7 are in the bottom layer, while nodes 8 to 13 are in the top layer, vertically above the centroids of the 

bottom triangles. The centre of symmetry is at node 4, through which the vertical axis of rotational 

symmetry of the configuration passes. By reference to the upper diagram of Fig. 1(a), the symmetry 

operations of group 𝐶3𝑣, describing the symmetry of a regular 3-sided polygon, are 

{𝑒, 𝐶3, 𝐶3
−1, 𝜎1, 𝜎2, 𝜎3}, where 𝑒 is the identity element (equivalent to a rotation of 2𝜋 about the axis of 
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rotational symmetry), 𝐶3 and 𝐶3
−1 are clockwise and anticlockwise rotations of 2𝜋/3 about the axis of 

rotational symmetry, while 𝜎1, 𝜎2 and 𝜎3 are reflections in vertical planes 1 − 1, 2 − 2 and 3 − 3 as 

shown. Idempotents of symmetry group 𝐶3𝑣 may easily be written down from the character table of the 

symmetry group [3, 4]. In terms of the symmetry elements of the group, these are as follows: 

                                                    𝑃(1) =
1

6
(𝑒 + 𝐶3 + 𝐶3

−1 + 𝜎1 + 𝜎2 + 𝜎3)                                          (1) 

                                                    𝑃(2) =
1

6
(𝑒 + 𝐶3 + 𝐶3

−1 − 𝜎1 − 𝜎2 − 𝜎3)        (2) 

                                                              𝑃(3) =
1

3
(2𝑒 − 𝐶3 − 𝐶3

−1)                                             (3) 

By multiplying out the above operators, it may easily be seen that 𝑃(𝑖)𝑃(𝑖) = 𝑃(𝑖) for all 𝑖 (𝑖 = 1, 2, 3). 

Furthermore, the orthogonality property also holds, i.e. 𝑃(𝑖)𝑃(𝑗) = 0 if 𝑖 ≠ 𝑗. 

3. Basis vectors of the triangular space grid 

Let us consider the vertical displacements {𝑣1, 𝑣2 , … , 𝑣13} of concentrated masses at nodes {1, 2, … , 13} 

respectively, representing the small transverse motions of the grid as it undergoes free vibration. The 

vibrating system therefore has 𝑛 = 13 degrees of freedom {𝑣1, 𝑣2 , … , 𝑣13}. A conventional lumped-

parameter vibration analysis of this system would lead to a 13 × 13 determinant, the vanishing condition 

of which results in a 13th-degree characteristic polynomial equation. Solution of the characteristic 

equation yields 13 eigenvalues (hence natural frequencies of the system), allowing the 13 modes of 

vibration to be determined. Although this is a relatively small problem, a considerable amount of effort 

is still required to evaluate the dynamic characteristics of the system (frequencies and modes of 

vibration). On the other hand, group theory decomposes the 13 × 13 system matrix into a number of 

𝑟 × 𝑟 independent matrices (𝑟 ≪ 𝑛), which can be separately solved for all eigenvalues. This separation 

is achieved by applying idempotents 𝑃(1), 𝑃(2) and 𝑃(3), in turn, upon each of the 13 degrees of freedoms 

of the system, thus creating three independent subspaces 𝑆(1), 𝑆(2) and 𝑆(3) of the problem. 

When the first idempotent  𝑃(1) is applied (as an operator) upon {𝑣1, 𝑣2 , … , 𝑣13}, we obtain 13 symmetry-

adapted freedoms, but not all of them are independent. We may select a set of 𝑟1 independent symmetry-

adapted freedoms (𝑟1 ≪ 13) as the basis vectors Φ𝑖
(1)

 (𝑖 = 1, 2, … , 𝑟1) of subspace 𝑆(1). Repeating the 

process using idempotents  𝑃(2) and 𝑃(3) generates the 𝑟2 basis vectors of subspaces 𝑆(2) and the 𝑟3  

basis vectors of subspace 𝑆(3), respectively. The results for all three subspaces are as follows [11]: 

Subspace 𝑆(1) 

                                                       𝛷1
(1)

= 𝑣1 + 𝑣2 + 𝑣3 + 𝑣5 + 𝑣6 + 𝑣7                                              (4) 

                                                                            Φ2
(1)

= 𝑣4                                                                      (5) 

                                                                Φ3
(1)

= 𝑣8 + 𝑣11 + 𝑣13                                                           (6) 

                                                               Φ4
(1)

= 𝑣9 + 𝑣10 + 𝑣12                                                             (7) 

Subspace 𝑆(2) 

                                                     𝛷1
(2)

= 𝑣1 − 𝑣2 − 𝑣3 + 𝑣5 + 𝑣6 − 𝑣7                                               (8) 

Subspace 𝑆(3) 

                                                               Φ1
(3)

= 2𝑣1 − 𝑣5 − 𝑣6                                                             (9) 

                                                               Φ2
(3)

= 2𝑣5 − 𝑣1 − 𝑣6                                                             (10) 

                                                               Φ3
(3)

= 2𝑣2 − 𝑣3 − 𝑣7                                                             (11) 

                                                               Φ4
(3)

= 2𝑣3 − 𝑣2 − 𝑣7                                                             (12) 
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                                                               Φ5
(3)

= 2𝑣8 − 𝑣11 − 𝑣13                                                             (13) 

                                                               Φ6
(3)

= 2𝑣11 − 𝑣8 − 𝑣13                                                             (14) 

                                                               Φ7
(3)

= 2𝑣9 − 𝑣10 − 𝑣12                                                             (15) 

                                                               Φ8
(3)

= 2𝑣10 − 𝑣9 − 𝑣12                                                             (16) 

Clearly, subspaces 𝑆(1), 𝑆(2) and 𝑆(3) are 4-dimensional (𝑟1 = 4), 1-dimensional (𝑟2 = 1) and 8-

dimensional (𝑟3 = 8) respectively. Thus, these subspaces will have 4, 1 and 8 modes of vibration respectively. 

If the basis vectors of each subspace are plotted as shown in Figure 2, the symmetries of the subspaces become 

more evident. The plotted values are the coefficients of the 𝑣 terms in Equations (4–16). Black dots denote 

positive coefficients of 𝑣 (downward displacement of the node), while red dots denote negative coefficients 

of 𝑣 (upward displacement of the node), the diameter of the dot being proportional to the coefficient. 

 

 

 

 

Figure 2: Basis-vector plots of the subspaces of the triangular space grid: (a) subspace 𝑆(1); 

(b) subspace 𝑆(2); (c) subspace 𝑆(3) [11]. 
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As pointed out earlier, the irreducible representation associated with subspace 𝑆(3) is a 2-dimensional 

representation of the symmetry group 𝐶3𝑣 [3, 4, 11, 20]. This implies that the eigenvalues in this subspace 

will be doubly repeating. Thus, the subspace will have only four distinct eigenvalues. However, unless a 

way can be found of decomposing subspace 𝑆(3) further, an 8-dimensional eigenvalue problem (leading 

to an 8th-degree characteristic equation) will still need to be solved in order to arrive at the four doubly 

repeating solutions. This requires considerable computational effort. In the next section, a special pair of 

operators is proposed for the further decomposition of subspace 𝑆(3), to reduce computational effort.  

4. Special operators for subspace S(3) of symmetry group C3v 

For problems involving symmetry group 𝐶3𝑣, we seek two operators 𝑃(3,1) and 𝑃(3,2) that are able to 

subdivide the degenerate subspace 𝑆(3) into two smaller subspaces 𝑆(3,1) and 𝑆(3,2) spanned by linear 

combinations of the basis vectors of subspace 𝑆(3), such that the basis vectors of subspace 𝑆(3,1) are 

orthogonal to those of subspace 𝑆(3,2). This would then allow subspaces 𝑆(3,1) and 𝑆(3,2) to be treated 

separately. We require these operators to satisfy the following conditions: 

𝑃(3,1) + 𝑃(3,2) = 𝑃(3)                                                             (17) 

𝑃(3,1)𝑃(3,1) = 𝑃(3,1)                                                                (18) 

𝑃(3,2)𝑃(3,2) = 𝑃(3,2)                                                                (19) 

𝑃(3,1)𝑃(3,2) = 0                                                                       (20) 

The first condition is the requirement that the sum of the two special operators must equal the idempotent 

𝑃(3) as given by Equation (3). The second and third conditions require the two special operators to have the 

property 𝑃(𝑖)𝑃(𝑖) = 𝑃(𝑖) common to all idempotents. The last condition requires the two special operators to 

be orthogonal to each other, to ensure the orthogonality of the basis-vector sets of subspaces 𝑆(3,1) and 𝑆(3,2).  

To preserve the rotational symmetries of the parent idempotent 𝑃(3) (see Equation (3)), let each of the 

sought operators 𝑃(3,1) and 𝑃(3,2) comprise half of 𝑃(3) and a linear combination of reflection elements 
{𝜎1, 𝜎2, 𝜎3} that is of equal magnitude but of opposite sign (i.e. the linear combination of {𝜎1, 𝜎2, 𝜎3} in 

𝑃(3,1) must be the negative of that in 𝑃(3,2) so that the sum of the two linear combinations is zero). The 

following expressions for 𝑃(3,1) and 𝑃(3,2) fulfill all the above conditions: 

                                                    𝑃(3,1) =
1

6
(2𝑒 − 𝐶3 − 𝐶3

−1 − 𝜎1 − 𝜎2 + 2𝜎3)                                 (21) 

                                                    𝑃(3,2) =
1

6
(2𝑒 − 𝐶3 − 𝐶3

−1 + 𝜎1 + 𝜎2 − 2𝜎3)      (22) 

Equations (21) and (22), which have never been proposed in the literature, are the sought special operators 

for the further decomposition of subspace 𝑆(3). They have all the properties of idempotents, so they may 

be referred to as the idempotents of the semi-subspaces 𝑆(3,1) and 𝑆(3,2). Let us assume the parent subspace 

𝑆(3) is of dimension 𝑟3 (this is always an even integer) before it is decomposed. When applied upon the 

normal variables of a problem, operators 𝑃(3,1) and 𝑃(3,2) automatically generate the 𝑟3/2  basis vectors 

of subspace 𝑆(3,1) and the 𝑟3/2  basis vectors of subspace 𝑆(3,2) respectively, thus decomposing subspace 

𝑆(3) into two subspaces that are each of half the size of subspace 𝑆(3). In the next section, the two operators 

will be applied to the further decomposition of subspace 𝑆(3) of the triangular space grid.   

5. Application of operators to the triangular space grid 

Applying the operator 𝑃(3,1) (Equation (21)) on each of the freedoms {𝑣1, 𝑣2 , … , 𝑣13} results in 13 

symmetry-adapted freedoms, only four of which are independent. Applying the operator 𝑃(3,2) (Equation 

(22)) on each of the freedoms {𝑣1, 𝑣2 , … , 𝑣13} also results in 13 symmetry-adapted freedoms, only four 

of which are independent. Taking the four independent symmetry-adapted freedoms for each subspace, 

we obtain the following sets of basis vectors for subspaces 𝑆(3,1) and 𝑆(3,2) of the triangular grid: 
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Subspace 𝑆(3,1) 

                                                               Φ1
(3,1)

= 2𝑣1 − 𝑣5 − 𝑣6 − 𝑣2 − 𝑣3 + 2𝑣7                                     (23) 

                                                               Φ2
(3,1)

= 2𝑣2 − 𝑣7 − 𝑣3 − 𝑣1 − 𝑣6 + 2𝑣5                                     (24) 

                                                               Φ3
(3,1)

= 𝑣8 + 𝑣13 − 2𝑣11                                                             (25) 

                                                               Φ4
(3,1)

= 𝑣9 + 𝑣12 − 2𝑣10                                                             (26) 

Subspace 𝑆(3,2) 

                                                               Φ1
(3,2)

= 2𝑣1 − 𝑣5 − 𝑣6 + 𝑣2 + 𝑣3 − 2𝑣7                                     (27) 

                                                               Φ2
(3,2)

= 2𝑣2 − 𝑣7 − 𝑣3 + 𝑣1 + 𝑣6 − 2𝑣5                                     (28) 

                                                               Φ3
(3,2)

= 𝑣8 − 𝑣13                                                                   (29) 

                                                               Φ4
(3,2)

= 𝑣9 − 𝑣12                                                                    (30) 

The basis vectors of subspaces 𝑆(3,1) and 𝑆(3,2) are plotted in Figure 3. These subspaces have distinct 

symmetry properties, as is clearly evident from the plots: all the basis-vector plots of subspaces 𝑆(3,1) are 

symmetric about axis 3 − 3, while all the basis-vector plots of subspace 𝑆(3,2) are antisymmetric about 

axis 3 − 3. We therefore expect the vibration modes of subspaces 𝑆(3,1) and 𝑆(3,2) to exhibit a similar 

pattern of symmetry properties. Thus, apart from simplifying the computation of actual frequencies and 

mode shapes of the parent subspace 𝑆(3), the operators 𝑃(3,1) and 𝑃(3,2) also untangle the symmetries of 

the subspace, separating them into 𝐶1𝑣-symmetric modes (i.e. modes with one axis of symmetry in plan) 

and C1-symmetric modes (i.e. modes with one axis of antisymmetry in plan). 

 

 

Figure 3: Further decomposition of subspace  𝑆(3) of the triangular space grid: (a) Basis-vector plots of subspace 

𝑆(3,1); (b) Basis-vector plots of subspace 𝑆(3,2). 

For each mode in subspaces 𝑆(3,1), there will be a corresponding mode in subspace 𝑆(3,2) that has an 

identical natural frequency (explaining the phenomenon of doubly-repeating frequencies associated with 
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the parent subspace 𝑆(3)). However, the basis-vector sets of subspaces 𝑆(3,1) and 𝑆(3,2) are orthogonal to 

each other, i.e. Φ𝑖
(3,1)

Φ𝑗
(3,2)

=0 for any 𝑖 = {1, 2, 3, 4} and any 𝑗 = {1, 2, 3, 4}. For example, writing the 

coefficients of basis vectors Φ1
(3,1)

, Φ1
(3,2)

 and  Φ2
(3,2)

 (see Equations (23), (27) and (28)) as  B1
(3,1)

, B1
(3,2)

 

and B2
(3,2)

 respectively, we have:- 

{𝐵1
(3,1)

}
𝑇

{𝐵1
(3,2)

} = 

{2 −1 −1       0 −1 −1      2  0   ⋯  }{2  1   1      0 −1 −1   − 2  0   ⋯  }𝑇 = 0 

{𝐵1
(3,1)

}
𝑇

{𝐵2
(3,2)

} = 

{2 −1 −1       0 −1 −1      2  0   ⋯  }{1   2  −1      0 −2  1    −1  0   ⋯  }𝑇 = 0 

 

showing that Φ1
(3,1)

 and Φ1
(3,2)

 are orthogonal vectors, as are Φ1
(3,1)

 and Φ2
(3,2)

, and so forth. 

6. Validation of operators 

To validate the proposed operators for the further decomposition of subspace 𝑆(3) of problems with 𝐶3𝑣 

symmetry, a spring-mass dynamic model with 3 degrees of freedom {𝑢1, 𝑢2, 𝑢3}, and having 3 masses and 

6 springs interconnected in a 𝐶3𝑣-symmetric pattern, was considered. This example was considered in a 

previous study of the first author [21], where natural frequencies of vibration for all subspaces of the 

problem were computed, but without the further decomposition of subspace 𝑆(3) proposed here. In that 

previous study, subspace 𝑆(3) was indeed shown to have doubly-repeating natural frequencies, but these 

frequencies were computed using the basis vectors of the 2-dimensional subspace 𝑆(3).  

In the present validation, operators in Equations (21) and (22) have been applied to the degrees of freedom 

{𝑢1, 𝑢2, 𝑢3} of the full space of the spring-mass system, resulting in two 1-dimensional subspaces 𝑆(3,1) and 

𝑆(3,2) that separately yield equal eigenvalues (the repeating natural frequencies of subspace 𝑆(3)) and modes 

that are orthogonal to each other, thus fully validating the correctness of the proposed operators. Due to space 

constraints, details cannot be presented here, but will be shown in the oral presentation at the conference.  

As additional validation, the buckling of a rigid 3-sided regular polygonal frame, under the compression 

action of equal joint loads 𝑃 directed towards the centre of symmetry 𝑂, was considered (see Figure 4). 

  

      (a)            (b)               (c)   (d)  

Figure 4: 𝐶3𝑣-symmetric triangular frame subjected to point loads 𝑃 directed towards centre of symmetry: (a) loading 

configuration; (b) rotational joint freedoms; (c) first mode (𝐶1𝑣-symmetric); second mode (𝐶1-symmetric) [23]. 

This example was also considered in a previous study by the authors [23], where buckling eigenvalues for 

all subspaces of the problem were computed analytically using group theory. In that study, the further 

decomposition of subspace 𝑆(3) was achieved by a search for a linear combination of the two basis vectors 

of subspace 𝑆(3) such that the ensuing basis vectors were orthogonal to each other, thus yielding the basis 

vectors of the semi-subspaces 𝑆(3,1) and 𝑆(3,2). In the present work, subspace 𝑆(3) of the same frame has 

been decomposed more systematically using the operators in Equations (21) and (22). This has led to 

exactly the same results for eigenvalues and mode shapes, confirming the validity of the two operators. 
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The first two buckling modes have equal eigenvalues, and belong to subspace 𝑆(3). Mode 1 (subspace 𝑆(3,1)) 

has 𝐶1𝑣 symmetry (i.e. one axis of symmetry), while mode 2 (subspace 𝑆(3,2)) has 𝐶1 symmetry (i.e. one axis 

of antisymmetry) – see Figures 4(c) and (d). The first eight modes as computed from a finite-element analysis 

(FEM) are shown in Figure 5, while comparisons between group-theoretical (GRT) and FEM results are 

shown in Table 1 for the first six modes. The agreement between theoretical and FEM results is excellent. 

 

Figure 5: First eight buckling modes of the triangular frame as yielded by FEM [23]. 

Table 1: Group-theoretic (GRT) versus finite-element analysis (FEM) results for the triangular frame [23]  

(𝜆ℎ denotes the eigenvalue for mode ℎ of the full system). 

ℎ 𝜆ℎ 

(GRT) 

𝜆ℎ 

(FEM) 

% difference 

in 𝜆ℎ values 

symmetry of 

mode (GRT) 

symmetry of 

mode (FEM)  

1 3.857 3.813 1.2  𝐶1 [𝑆(3,2)] 𝐶1 

2 3.857 3.813 1.2 𝐶1𝑣 [𝑆(3,1)] 𝐶1𝑣 

3 6.283 6.191 1.5 𝐶3 [𝑆(2)] 𝐶3 

4 6.283 6.191 1.5 𝐶3𝑣 [𝑆(1)] 𝐶3𝑣 

5 8.187 8.026 2.0 𝐶1 [𝑆(3,2)] 𝐶1 

6 8.187 8.026 2.0 𝐶1𝑣 [𝑆(3,1)] 𝐶1𝑣 

7. Concluding remarks 

In this contribution, we have presented, for the first time, a new pair of operators for the full decomposition 

of the group-theoretic subspaces of structural configurations belonging to the symmetry group 𝐶3𝑣, which 

describes the symmetry of a 3-sided regular polygon. The results find application in the analysis of symmetric 

cable nets, space grids, lattice shells and other spatial structures.  

Specifically, by acting on the normal variables of a structural problem (such nodal positions and degrees of 

freedoms), these operators generate two sets of basis vectors that are orthogonal to each other, effectively 

decomposing the degenerate subspace 𝑆(3) (associated with doubly-repeating solutions of the problem) into 

two independent semi-subspaces 𝑆(3,1) and 𝑆(3,2). In eigenvalue problems, the two semi-subspaces yield 

identical sets of eigenvalues. Modes of the same semi-subspace all have the same symmetry type: 𝑆(3,1) 

modes are symmetric and 𝑆(3,2) modes are antisymmetric about a vertical plane of the configuration.  

Application of these operators has been illustrated by reference to a double-layer triangular space grid, and 

their validity confirmed through comparisons with results from the literature. Thus, these operators not only 

simplify the computation of required quantities, but also “untangle” the symmetries of subspace 𝑆(3).          

References 

[1] T.J. Healey, “A group-theoretic approach to computational bifurcation problems with symmetry,” 

Computer Methods in Applied Mechanics and Engineering, vol. 67,  pp. 257–295, 1988. 

[2] K. Ikeda, K. Murota and H. Fujii, “Bifurcation hierarchy of symmetric structures,” International 

Journal of Solids and Structures, vol. 27, no. 12, pp. 1551–1573, 1991. 



Proceedings of the IASS Symposium 2024 

Redefining the Art of Structural Design 
 

 

 10 

 

[3] M. Hamermesh, Group Theory and its Application to Physical Problems, Pergamon Press, 1962. 

[4] G.M. Zlokovic, Group Theory and G-Vector Spaces in Structural Analysis, Ellis Horwood, 1989. 

[5] K. Ikeda and K. Murota, “Bifurcation analysis of symmetric structures using block-diagonalisation,” 

Computer Methods in Applied Mechanics and Engineering, vol. 86, pp. 215–243, 1991. 

[6] A. Zingoni, M.N. Pavlovic, D. Lloyd-Smith and G.M. Zlokovic, “Application of group theory to the 

analysis of space frames,” in Space Structures 4: Proceedings of the 4th International Conference 

on Space Structures, Surrey, Guildford, UK, September 5-10, 1993, G.A.R. Parke, C.M. Howard, 

Eds. London: Thomas Telford, 1993. pp. 1334–1347. 

[7] A. Zingoni, M.N. Pavlovic and G.M. Zlokovic, “A symmetry-adapted flexibility approach for multi-

storey space frames: General outline and symmetry-adapted redundants,” Structural Engineering 

Review, vol. 7, no. 2, pp. 107–119, 1995. 

[8] R.D. Kangwai, S.D. Guest and S. Pellegrino, “An introduction to the analysis of symmetric 

structures,” Computers and Structures, vol. 71, pp. 671-688, 1999. 

[9] A. Zingoni, “An efficient computational scheme for the vibration analysis of high-tension cable 

nets,” Journal of Sound and Vibration, vol. 189, no. 1, pp. 55–79, 1996. 

[10] A. Zingoni, “Group-theoretic vibration analysis of double-layer cable nets of D4h symmetry,” 

International Journal of Solids and Structures, vol. 176/177, pp. 68–85, 2019. 

[11] A. Zingoni, “On the symmetries and vibration modes of layered space grids,” Engineering 

Structures, vol. 27, no. 4, pp. 629–638, 2005. 

[12] A. Zingoni, “A group-theoretic finite-difference formulation for plate eigenvalue problems,” 

Computers and Structures, vol. 112/113, pp. 266–282, 2012. 

[13] R.D. Kangwai and S.D. Guest, “Detection of finite mechanisms in symmetric structures,” 

International Journal of Solids and Structures, vol. 36, pp. 5507–5527, 1999. 

[14] S.D. Guest and P.W. Fowler, “Symmetry conditions and finite mechanisms,” Journal of Mechanics 

of Materials and Structures, vol. 2, no. 2, pp 293–301, 2007. 

[15] Y. Chen, P. Sareh and J. Feng, “Effective insights into the geometric stability of symmetric skeletal 

structures under symmetric variations,” International Journal of Solids and Structures, vol. 69/70, 

pp. 277–290, 2015. 

[16] A. Kaveh and M. Nikbakht, “Stability analysis of hyper symmetric skeletal structures using group 

theory,” Acta Mechanica, vol. 200, nos. 3/4, pp. 177–197, 2008.  

[17] C. Kaluba and A. Zingoni, “Group-theoretic buckling analysis of symmetric plane frames,” ASCE 

Journal of Structural Engineering, vol. 147, no. 10, art. 04021153, 2021.  

[18] Y. Chen, R. Xu, C. Lu, K. Liu, J. Feng and P. Sareh, “Multi-stability of the hexagonal origami hypar 

based on group theory and symmetry breaking,” International Journal of Mechanical Sciences, vol. 

247, art. 108196, 2023. 

[19] A. Zingoni, “Group-theoretic exploitations of symmetry in computational solid and structural 

mechanics,” International Journal of Numerical Methods in Engineering, vol 79, pp. 253–289, 2009. 

[20] A. Zingoni, “Group-theoretic insights on the vibration of symmetric structures in engineering,” 

Philosophical Transactions of the Royal Society A, vol. 372, art. 20120037, 2014. 

[21] A. Zingoni, “On group-theoretic computation of natural frequencies for spring-mass dynamic systems with 

rectilinear motion,” Communications in Numerical Methods in Engineering, vol. 24, pp. 973–987, 2008. 

[22] A. Zingoni, “On the best choice of symmetry group for group-theoretic computational schemes in 

solid and structural mechanics,” Computers and Structures, vol. 223, pp. 1–17, 2019. 

[23] A. Zingoni and C. Chiluba, “Computational simplifications and observations on buckling modes of 

polygonal ring frames under symmetric compressive joint loads,” Structures, vol. 60,  art. 105904, 2024. 


