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Abstract 

This paper introduces an innovative grid-shell design framework by incorporating Willmore energy into 

the Force Density Method (FDM). The Nonlinear Force Density Method enhances grid-shell form 

refinement by effectively managing complex constraints and objective functions, building on linear 

FDM. This approach utilizes the reciprocal discrete Airy stress functions and graphic statics to establish 

initial grid-shell geometries in equilibrium, with a significant focus on curvature optimization. The 

Maxwell-Mondrian diagram, combining the form, force, and slope diagrams, plays a central role in 

calculating discrete Gaussian and mean curvatures crucial for assessing Willmore energy. Proposed 

method shifts the focus from Gaussian curvature, emphasized from its relation to structural vertical 

equilibrium, to mean curvature, selected for its relevance in aesthetic considerations. The shift facilitates 

smoother and more uniform surfaces, essential for both structural efficiency and aesthetic quality in 

grid-shell designs. By targeting mean curvature optimization, the minimization of Willmore energy 

provides a distinct and objective framework. This paper details the methodology and demonstrates its 

applications through examples with square, rectangle and simplified form diagrams inspired by the Great 

Court Roof of the British Museum. 

Keywords: Grid-shell, force density method, curvature-driven optimization, Willmore energy, Mixture of diagrams  

1. Introduction 

Grid-shell design has advanced through diverse methodologies, notably with graphic statics gaining 

prominence for its intuitive approach to form and force diagrams[1]. The previous studies have explored 

many grid-shell design using both 3D Rankine reciprocals[2] and 2D Maxwell reciprocals, the latter 

being the focus of this paper on 2.5D grid-shell structures. Additionally, the Airy Stress Function (ASF) 

has been instrumental in studying shells and tension structures, as seen in works like Sehlström’s[3]. 

Numerical methods such as the force density method[4] and dynamic relaxation[5] are well-established. 

Thrust Network Analysis (TNA)[6], an extension of the FDM, is particularly effective for compression-

only structures. 

This research focuses on developing grid-shells using the ASF, a potential tool in initial conceptual 

design stages. Several methods have been developed for constructing ASFs. One method involves 

creating ASF by directly combining states of self-stresses in an initial mesh and then defining the grid-

shell geometry through the force density method[7]. This method demonstrates design freedom, but it 

also presents challenges in determining the number of independent states of self-stress which is same as 

the number of possible planar-liftings of the form diagram[8]. Another technique employs a predefined 

boundary divided into a triangular mesh. By lifting internal nodes based on a pre-determined load path, 

a polyhedral Airy stress function is formed according to reference [9]. This technique is effective for 
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tension-compression mixed structures but comes with ambiguity in the lifting process and difficulty in 

controlling edge due to interlinked edges. The third approach uses an electro-magnetic analogy and Biot-

Savart law, applicable in situations where no initial mesh is needed, and only a known boundary is 

present [10]. This approach can create grid-shells with a nearly constant span-to-height ratio and 

straightforward node lifting. However, advantageous for good engineering properties, it is mainly 

suitable for compression-only structures. 

This paper aims to streamline the initial creation of ASFs, building upon the methodologies of 

Konstantatou et al.[9] and focuses on simplifying the initial form-setting process to transform perceived 

design freedom into practical applications. Determining initial z coordinates that satisfy predetermined 

load paths is a complex task. Automating this selection process introduces a new level of control and 

efficiency in generating ASFs. Additionally, this paper integrates aesthetic considerations into the 

structural design process using Willmore energy. The proposed method in this paper allows for a 

quantitative and approximate assessment of aesthetics, providing a more objective comparison of 

designs and a pragmatic alternative to intuition-based approaches. In the case of mixed-Airy, ASF and 

grid-shell have a dual relationship under the same vertical loading conditions[11], implying that 

determining ASF inherently defines the grid-shell. With various potential ASFs generated through 

different z coordinates, a multitude of grid-shell designs can be developed. The focus here is on selecting 

a grid-shell with lower Willmore energy, indicating an optimized balance between structural integrity 

and aesthetic quality.  

The paper is organized as follows: section 2 provides an overview of the background knowledge and 

key concepts utilized in this research; section 3 introduces the base methodology and its extension using 

the Maxwell Mondrian diagram with Grasshopper Galapagos and the application of the Nonlinear Force 

Density method via Python; section 4 presents the results using basic form diagrams, such as square and 

rectangular shapes, as well as a simplified version inspired by the Great Court Roof of the British 

Museum form diagrams. Finally, section 5 summarizes the outcomes of this research and discusses 

potential future works. 

2. Background literature 

2.1. Graphic statics and Airy stress function  

Airy stress function is a useful tool for designing plane-faced and funicular grid-shell. The Airy stress 

function, 𝜙 = 𝜙(𝑥, 𝑦), is used to describe the stress within the structure through their second derivatives, 

such as 𝜎𝑥𝑥 =
𝜕2𝜙

𝜕𝑦2, 𝜎𝑥𝑦 =
𝜕2𝜙

𝜕𝑥𝜕𝑦
, 𝜎𝑦𝑦 =

𝜕2𝜙

𝜕𝑥2  [12].  This can be extended to discrete Airy stress function 

and the folds of plane-faced polyhedron carry all the forces. Therefore, faces have zero stress and the 

slope between adjacent faces indicates the magnitude of the force[12]. The discrete Airy stress function 

is a lift of the 2D form diagram. Based on rigidity theory, linearly independent lift of nodes generates 

linearly independent Airy stress function and as well as linearly independent state of self-stress. This 

paper only uses triangular meshes, implying every node lifting is linearly independent[12]. 

Maxwell made a conjecture that if a 2D planar framework is in a state of self-stress, it must be a 

projection of a plane-faced polyhedron. In addition, Maxwell used the context of projective geometry to 

construct these diagrams. Based on projective geometry, the pole (𝛼, 𝛽, 𝛾) maps to a reciprocal plane 

𝑧 = 𝛼𝑥 + 𝛽𝑦 − 𝛾 in 3D space[13]. Therefore, a discrete Airy stress polyhedron, 𝜙, has a reciprocal 

polyhedron, 𝜙∗ and this can be constructed by mapping a plane in  𝜙 to a point in 𝜙∗. The projection of 

𝜙∗ onto the xy plane is a force diagram. Airy stress function ensures horizontal equilibrium. 

2.2. Force density method 

The Force Density Method (FDM) has been widely used for form-finding in grid-shell structures. The 

force density, q, defined as the ratio of axial forces to the lengths of the members, simplifies a potentially 

nonlinear system of equation into a linear one. The force densities are conserved even during projection, 

allowing for the determination of the height of the internal nodes 𝑧𝑁 from the equation 𝑧𝑁 = 𝐷𝑁
−1(𝑝𝑧 −

𝐷𝐹𝑧𝐹). Here 𝑝𝑧 represents the vertical loading for internal nodes, 𝐷𝑁 = 𝐶𝑁
𝑇𝑄𝐶𝑁, 𝐷𝐹 = 𝐶𝑁

𝑇𝑄𝐶𝐹where C 
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is the connectivity matrix between nodes and edges, and 𝑄 is the diagonal matrix of force densities [5]. 

This paper utilizes triangular meshes to ensure planarity, addressing a limitation of the FDM, which 

does not guarantee flatness of faces.  

The Nonlinear Force Density Method (NFDM) incorporates additional constraints into the conventional 

FDM. NFDM treats form-finding as a least-squares problem, seeking to optimize the fit by minimizing 

the residuals within the system of equations. The iterative optimization process involved in NFDM 

employs numerical methods such as Gauss-Newton or conjugate gradient methods, which enable the 

precise determination of form while adhering the specified constraints [5]. Significantly, NFDM is 

applicable to structures with mixed tension and compression elements. 

2.3. Mixture of diagrams 

The Maxwell-Minkowski diagram combines two distinct vectors into a single diagram such as form and 

force diagrams. This diagram depicts the load path and force density, represented by the area and aspect 

ratio of rectangles, respectively.  

A novel concept known as the slope diagram [11], parallels the role of the force diagram, which shares 

reciprocal relationship with the form diagram through Airy Stress function. In the slope diagram, this 

mediation is performed by the grid-shell, and the red arrows indicates the inclination of the grid-shell’s 

edges, as shown in Fig. 1. Notably, in plane-faced funicular grid-shells, the edges of both force and slope 

diagrams are parallel. 

The Maxwell-Mondrian diagram synthesizes the form, force, and slope diagram into a unified diagram. 

The area resulting from integrating the slope diagram is double the mixed area and signifies the vertical 

load. The mixed area remains constant despite translations of the slope diagram. As shown in Fig. 1, 

cases 1 and 2 have different slope diagrams, but twice the mixed areas which are represented in blue, 

are the same. This property allows for the computation of curvature using the mixed area. 

 

Figure 1: A simple example of (a) form, (b) force, (c) slope and (d) FS (Force & Slope) Minkowski diagrams. 

The red arrow indicates the slope of the corresponding bar. The blue area in the FS Minkowski diagram 

represents twice the mixed area[11]. 

2.4. Isotropic curvature  

Isotropic geometry is a fundamental concept underlying the Airy stress function, 𝜙 , as it directly 

correlates surface curvatures with stresses. This aspect is particularly beneficial in designing grid-shells 

subjected to vertical loading. In isotropic geometry, surfaces map (𝑥, 𝑦) to (𝑥, 𝑦, 𝑓(𝑥, 𝑦)), thus requiring 

the use of second derivatives of a function, represented here by 𝜙 [11].  

⚫ Isotropic Gaussian curvature:  indicates local sphericity. 

⚫ Isotropic mean curvature:  relates to the surface’s bending. 
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In the discrete version, curvature at a mesh vertex is calculated using area ratios related to the form, 

force, and slope diagram. The isotropic Gaussian curvature of Airy stress function (𝐾𝜙) is defined as  

 and the mean isotropic curvature of the shell relative to the Airy stress function (𝐻𝑆
𝑟𝑒𝑙) as  

 [11].  

  (1) 

Pucher’s equation (Eq. 1) establishes a relationship between Gaussian curvature and axial equilibrium 

in shells under vertical loading. Applying the self-Airy grid-shell condition, Gaussian curvature 

corresponds to the left side of the equation[11]. This relationship illustrates that a grid-shell’s ability to 

effectively distribute vertical loads, is directly reflected in Gaussian curvature. Incorporating Willmore 

energy, the integral of mean curvature over a surface, as a measure of deviation from flatness, this paper 

considers both curvature properties.  

2.5. Willmore energy 

Energy measures applied to polyhedral meshes often evaluate the smoothness of surfaces. Mesh energy, 

a comprehensive measure, assesses how accurately a mesh approximates a smooth surface, 

encompassing curvature, variations in normal vectors, edge lengths, and dihedral angles [14]. The focus 

is on bending energy, which quantifies resistance to deformation, closely aligning with fairness 

functionals [15]. These mathematical expressions can evaluate surface smoothness based on curvature 

properties, defined in terms of mean curvature 𝐻 and Gaussian curvature 𝜅, expressed as: 

                                                                                                             (2) 

For 𝛼 = 2, these denotes bending energy. This paper focuses on Willmore energy by setting 𝛼 = 0. 

While 𝛼 = 1  corresponds to the conformally invariant Willmore energy commonly discussed in 

computer graphics, an engineering perspective is sufficient to use 𝛼 = 0. This geometric energy captures 

how much a surface deviates from local sphericity; a surface with lower energy is closer to being 

spherical. For the discrete version, Willmore energy is applied to a triangulated mesh 𝑀, defined as:  

  (3) 

In this equation, 𝛾(𝑒𝑝𝑞) is the angle between the normals of the triangles adjacent to edge 𝑒𝑝𝑞. When 

triangles do not degenerate, then 𝑊(𝑀) approximates to  [16]. 

3. Methodology 

The methodology in this research is built upon the work of Konstantatou[9], whose approach to grid-

shell design and analysis utilized reciprocal discrete Airy stress functions in conjunction with the Force 

Density Method (FDM). This framework itself is rooted in the polarities-based approach to graphic 

statics[13], offering a novel perspective in the structural analysis and design of compression-and-tension 

structures. While Konstantatou’s methodology provided a direct means to achieve static equilibrium 

without iterative convergence algorithms, this paper extends this methodology by incorporating visual 

smoothness parameter. 

In this paper, the aim is to address the challenge of integrating aesthetic quantification into structural 

optimization. Specifically, the focus is on calculating Willmore energy, a measure of aesthetics, and 

using it as an optimization function within the FDM. This approach emphasizes maintaining vertical 

equilibrium as a primary constraint. By minimizing Willmore energy, the goal is to achieve smoother 

surfaces, indicative beauty in structural form. Additionally, this paper involves applying secondary 

constraints to adhere to a pre-established load path and ensuring sufficient curvature to maintain overall 

structural stability. This section outlines the steps undertaken to incorporate these elements into the 

extended methodology.  
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3.1. Explanation of Base Methodology  

Konstantatou’s approach[9], the polarities-based method constructs four reciprocal diagrams: a form 

diagram, a force diagram, and their respective Airy stress functions. They are all interlinked and directly 

created without iteration. Each vertex in the form diagram 𝐹(𝑣, 𝑒, 𝑓) can be lifted to its Airy stress 

function 𝑃(𝑣, 𝑒, 𝑓), where it corresponds to a reciprocal plane. For example, a vertex 𝑣𝑖 in 𝑃(𝑣, 𝑒, 𝑓), 

represented as (𝑐𝐴, 𝑐𝐵, −𝐶), maps to the reciprocal plane 𝜋𝑖
′ defined as 𝑧 = 𝐴𝑥 + 𝐵𝑦 + 𝐶 , and vice 

versa. This leads to the creation of the reciprocal Airy stress function 𝑃′(𝑣, 𝑒, 𝑓). By projecting these 

vertices onto the xy plane, the force diagram 𝐹′(𝑣, 𝑒, 𝑓) is generated. Each closed polygon 𝑓𝑖
′ in force 

diagram ensures horizontal static equilibrium at node 𝑣𝑖, and perpendicular edges between diagrams 

represent Maxwell configuration. The form diagram can be under either self-stress or external loading. 

Once the force diagram is given, the force density values are calculated using the Minkowski diagram 

𝑀𝑆(𝐹, 𝐹′), where the aspect ratio of each rectangle represents the force density. Then, FDM is applied 

to determine the z coordinates. In this approach, only triangular meshes are used, which allows for the 

lifting of internal nodes without limitations. The load path for each edge is determined by the shape of 

the Airy stress polyhedron at that edge: valleys indicate tension and ridges signify compression. By 

adjusting the curvature of the Airy stress function, the force in each edge can be controlled. For vertical 

loads, an approximation of point dead load using the Voronoi area of each node is assumed. Finally, the 

grid-shell 𝐺𝑆(𝑣, 𝑒, 𝑓) , which is lifted from the form diagram 𝐹(𝑣, 𝑒, 𝑓)  is created. This grid-shell 

represents one possible solution of static equilibrium according to lower bound theorem. The variety of 

available Airy polyhedrons allows for diverse load paths and gird-shells geometries, enhancing design 

flexibility. 

 

3.2. Objective function 1 from Maxwell Mondrian diagram and Grasshopper Galapagos  

In this section, the aforementioned methodology is extended to address the complexities associated with 

selecting the load path, specifically the difficulty in choosing initial z coordinates of the Airy Stress 

Function (ASF) that align with a predetermined load path, whether tension or compression. In addition, 

integrating aesthetic aspects into this framework presents a greater challenge. This approach strives to 

harmonize the visual smoothness of the ASF with the functional demands of the load path, ensuring that 

both aesthetic and structural objectives are met. 

To identify the best load path, this paper employed Galapagos, a genetic algorithm in Grasshopper. This 

entails finding the optimized z coordinates for internal nodes. The first step in this process is defining 

the objective function (𝑓1), denoted as:  

  (4) 

In this formula, Willmore energy is used to measure of aesthetic performance with lower values which 

indicates a smoother surface. The penalty term, with weighting coefficient 𝛼 ensures adherence to the 

pre-determined tension and compression paths. This is based on the convexity of each edge, determined 

by the convergence of normal vectors of the two faces sharing that edge. If this convexity is not 

maintained during the process, the penalty is applied. 

Using Konstantatou’s methodology, a grid-shell that ensures vertical equilibrium is first created using 

linear FDM. This is then extended by using the grid-shell as an Airy Stress function to create a reciprocal 

grid-shell. From this, a slope diagram is derived by projecting the reciprocal grid-shell onto the xy plane. 

Informed by Millar’s work[11], the slope diagram is then integrated into the Maxwell-Minkowski 

diagram, resulting in the creation of the Maxwell-Mondrian diagram. Within the Maxwell-Mondrian 

diagram, the mixed area between the force and slope diagrams at each node of the form diagram is 

calculated. This mixed area is then divided by the area of the polygon dual to a node in the force diagram 

to compute the discrete mean curvature at that node. The discrete Willmore energy is calculated by 

squaring these mean curvature values, multiplying them by the corresponding tributary area at each node. 
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Figure 2: Framework of determining ASFs and designing grid-shells 
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3.3. Objective function 2 from Nonlinear Force Density Method  

In advancing research towards identifying the optimal form, this section employs the Nonlinear Force 

Density Method (NFDM). This method is more integrated method than the Galapagos approach since 

the FDM process, constraints, and the solution search algorithm are all combined within one Python 

script. The objective function in NFDM remains the same as before, which is the Willmore energy. 

However, the approach to computing Willmore energy in NFDM differs from that used in the Galapagos 

method. In NFDM, the objective function needs to be expressed in terms of coordinate and force density. 

Since area calculations using the Maxwell-Mondrian diagram cannot be directly expressed in these terms, 

the fundamental definition of Willmore energy derived from the geometry of the form is used. 

Consequently, the computation of Willmore energy solely utilizes the form diagram.  

The ‘scipy.optimize.minimize’ function utilizing the SLSQP algorithm, is implemented to determine the 

form that meets constraints. This algorithm is widely recognized in NFDM for problems involving 

constraints. It is vital that the number of free internal nodes exceeds the number of constraints. In this 

segment, constraints play a pivotal role: strong constraints are explicitly incorporated as a part of the 

constraint function, while weak constraints are applied in the form of penalties. For strong constraints, 

the vertical equilibrium and the bounds for the x, y, and z coordinates are ensured. Specifically, to 

preserve the form diagram, changes in x and y coordinates are bounded between [-3,3]. For z coordinates, 

given assumption that the dead load is proportional to the Voronoi area-unsuitable for steep shells-the z 

coordinates are limited to maximum of 200, preventing excessive slopes.  

During the test simulations to refine this methodology, challenges were faced in achieving convergence. 

Initial values derived from Galapagos, a genetic algorithm based on global optimization, are integrated 

to find better starting points and mitigate the risk of local minima. Despite these enhancements, 

increasing the number of iterations revealed a tendency for the grid-shell to flatten, an effect akin to it 

becoming a part of a very large sphere. Therefore, a penalty for the large variation in the z coordinate is 

applied. Consequently, the objective function for the NFDM in this paper for the basic form diagrams is 

formulated as: 

  (5-a) 

  (5-b) 

  (5-c) 

  (5-d) 

The objective function for the simplified Great Court Roof form diagrams is similar to that of the basic 

form diagram, but with slightly different constraints. The summarized overall methodology is 

demonstrated in Fig. 2. 

 

4. Results 

4.1. Objective function 1 from Maxwell Mondrian diagram and Grasshopper Galapagos  

Utilizing the Maxwell Mondrian diagram in conjunction with the Grasshopper Galapagos method, 

diverse optimization results were achieved by setting different load paths. The form diagram, 

representing the load path, along with the Airy Stress Function, the optimized grid-shell, and the 

Maxwell Mondrian diagram, are visually expressed in Fig. 3. These illustrations demonstrate the 

effectiveness of this methodology in controlling the load path, addressing both structural and aesthetic 

considerations in grid-shell design. Furthermore, it is important to note that the Willmore energy value 

obtained through the Maxwell Mondrian diagram may significantly vary depending on each load path. 

This variation is primarily attributable to the scale of the area involved. Since the squared mean curvature, 

a dimensionless term, is multiplied by the area value, the Willmore energy value becomes highly 

sensitive to the scale of the area term. The resulting value can differ from the Willmore energy calculated 

solely based on the form, which is also a dimensionless term. Therefore, the key consideration is 
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ensuring that consistent relative magnitudes of Willmore energy value across different load paths 

indicate similar trends.  

4.2. Objective function 2 from Nonlinear Force Density Method 

Integrating all the steps in single Python script and performing Nonlinear Force Density Method presents 

issues of computational complexity and convergence. Particularly, calculations aimed at maintaining a 

predetermined load path are time-consuming. To address computational challenges, the Galapagos 

method was incorporated to provide an initial form for Python-based NFDM input. The strategy is 

visually documented in Fig. 4. Load path calculations were specifically applied in the Galapagos method 

and excluded in the NFDM process. Furthermore, the limitation on the change of the z coordinate is 

justified, as the input form has already undergone optimization, ensuring that the resulting structure does 

not resemble a flat surface, such as part of a large sphere. As the number of points increases, designing 

an initially specified load path becomes difficult, and strict adherence to these paths can indeed lead to 

structurally impractical designs. 

 

 

Figure 3: Three different load paths in the same (a) form diagrams 𝐹(𝑣, 𝑒, 𝑓), (b) determined polyhedral ASFs 

𝑃(𝑣, 𝑒, 𝑓) by Galapagos, (c) corresponding grid-shells 𝑆(𝑣, 𝑒, 𝑓), (d) Maxwell Mondrian diagrams 𝑀𝑀(𝑣, 𝑒, 𝑓) 
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Figure 4: The hybrid method framework combining the Galapagos method and the Nonlinear FDM method. 

The application of the hybrid method to a square-shaped form diagram with predetermined load path is 

depicted in Fig. 5, featuring: (b) corresponding ASF, (c) the initial grid-shell generated by the Galapagos 

method, and (d) the final grid-shell optimized by the Nonlinear FDM. Willmore energies for each shape 

are indicated below the image. Fig. 6 and 7 follow a similar format to Fig. 5 but apply to rectangular 

shapes with different load paths. Fig. 8 shows application to the simplified Great Court Roof form 

diagrams, while Fig. 9 applies the same method to a different geometry of the same form diagrams. Such 

observations illustrate a decrease in Willmore energy. 

 

 

Figure 5: Application of the hybrid method to a square-shaped form diagram 

 

 

Figure 6: Application of the hybrid method to a rectangular-shaped form diagram for load path case 1 

 

 

Figure 7: Application of the hybrid method to a rectangular-shaped form diagram for load path case 2 
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Figure 8: Application of the hybrid method to a simplified version inspired from the Great Court Roof of the 

British Museum form diagram 

 

Figure 9: Application of the hybrid method to a simplified version inspired from the Great Court Roof of the 

British Museum form diagram with different geometry 

 

5. Conclusions 

The paper has presented a framework for designing grid-shell that consider both structural and aesthetic 

aspects. In this approach, Willmore energy is used as a criterion for aesthetic performance and is 

calculated using two methods: Maxwell Mondrian diagram with the Grasshopper Galapagos method and 

the Nonlinear Force Density Method. Integrating these methods, the methodology achieves diverse 

optimization results through various load paths, emphasizing a balance between structural integrity and 

aesthetic aspect. This outcome assists designers in selecting the initial shape of grid-shells and reduces 

the complexity and difficulties associated with the design freedom of the Airy stress function. 

Applying this approach to different boundary geometries and conditions could provide more insights 

into its effectiveness. Furthermore, exploring additional measures for assessing aesthetic performance 

beyond Willmore energy could lead to further developments. The utilization of mixture of diagrams is 

beneficial for architects to understand structures and integrate them into their designs. Advancing this 

aspect and more actively employing those diagrams represents a potential area for growth. In this paper, 

an attempt was made to incorporate buckling problems by calculating Gaussian curvature based on the 

area ratio. However, due to the excessive computational demands and complexity incorporating this 

aspect into the Python script, the approach was modified to include a z penalty instead. 

Distinguishing between the two method of computing Willmore energy is crucial, particularly in 

understanding the duality between ASF and grid-shell in mixed-Airy cases. The first method calculates 

the Willmore energy of the grid-shell. Although this differs from the ASF calculation, it shares a duality 

relationship with it. The second method, focuses on computing the Willmore energy of the initial ASF 

input in Python, primarily targeting the ASF that also serves as a grid-shell in vertical equilibrium. The 

hybrid method begins with an initially optimized grid-shell as the input for Python, ultimately leading 

to a final optimized grid-shell.  
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