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Abstract 

For optimized truss structures to be practically applicable, it's essential to factor in the local stability of 

bars, ensuring stability and realism. Additionally, structural design must consider the initial crookedness 

of bars and residual stresses post-manufacture. These factors render the buckling strength highly non-

convex and nonlinear concerning cross-sectional areas.Therefore, most conventional truss optimization 

formulations include only local buckling constraints based on the Euler buckling criterion, while local 

buckling constraints based on design codes are rarely incorporated. To treat these problems, a novel 

topology optimization formulation for trusses is proposed, where the critical buckling strength is 

calculated according to the practical design code GB5007-2017. In addition, a linearized iterative 

allowable stress method is used to solve the optimization model. Since the allowable stresses are 

calculated at each iteration based on the critical buckling strength, other types of design codes can also 

be incorporated into the proposed truss topology optimization model. The proposed computational 

model shows, through a numerical example, the remarkable effect of including local buckling stability 

in the optimal design of trusses, while demonstrating that the optimized topology depends on whether 

the local buckling constraints are derived from the Euler buckling criterion or from actual structural 

design codes. 
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1. Introduction 

In conventional truss optimization models, the cross-sectional area of the bar typically serves as an 

optimization variable [1-6]. Moreover, since the critical buckling strength is contingent upon the cross-

section's shape, this information must be incorporated. Specifically, the second moment of the cross-

section is crucial for determining buckling strength. While simple cross-sections like circular or square 

ones allow for exact expression of the second moment of the area in terms of the cross-sectional area, 

the buckling strength itself is a concave function of the cross-sectional area [7, 8]. Consequently, 

obtaining optimal design becomes challenging. 

Hence, many studies on optimizing truss structures overlook the local buckling issue of bars [9, 10]. To 

utilize the optimized structure in practical design, a common approach is to increase the cross-sectional 

area of buckling-prone bars post-optimization [11]. This transforms the nonlinear problem of truss 

optimization, considering bar buckling stability, into a linear optimization focusing solely on stress 

constraints. However, this method fails to consider bar local buckling stability during the optimization 

process, thus yielding suboptimal results. A basic strategy to address bar local buckling stability involves 

setting the allowable compression stress to a constant fraction of the tensile stress [12]. This results in 

unequal permissible stresses for tension and compression, eliminating the need for further adjustments 

for bar local stability. Nevertheless, selecting an appropriate constant lower stress constraint for bars 



Proceedings of the IASS Symposium 2024 

Redefining the Art of Structural Design 
 

 

 2 

 

with varying lengths or axial forces proves challenging. Consequently, this method lacks practicality in 

integrating bar local buckling stability into truss optimization. 

The Euler buckling criterion [13] is commonly integrated into truss optimization formulations due to its 

relatively straightforward expression. However, when employing the ground structure approach [14] 

using nested analysis and design formulation [15], incorporating Euler buckling constraints poses 

significant challenges. Notably, Euler buckling constraints exhibit behavior akin to stress constraints, 

notorious for rendering the feasible set non-convex [16] and inducing degenerate regions where optimal 

points may lie [17]. Moreover, the feasible set becomes disjointed with Euler buckling constraints. To 

address these issues, the ε-relaxed approach [18], adapted from a similar technique for stress constraints 

[19], can handle disjointness and degeneracy. Nonetheless, dealing with numerical challenges stemming 

from non-convexity and parameter ε selection persists. Additionally, this method may not yield 

satisfactory optimization results for pressure constraints. 

Previous studies [13] have demonstrated that including local buckling in the truss optimization model 

can lead to vastly different topologies compared to those without such considerations. Hence, it is crucial 

to appropriately account for local buckling in truss optimization models. However, topology 

optimization of truss structures with bar buckling constraints based on design codes has received less 

attention compared to Euler buckling constraints. This is primarily due to the complexity of formulas in 

most design codes for calculating local buckling stability constraints, posing challenges for existing 

solvers. For instance, both Eurocode 3 [20] and GB5007-2017 [21] require consideration not only of bar 

length and cross-sectional shape but also of the slenderness ratio, further complicating the non-convex 

nature of the feasible set. Mela [12] proposed a mixed-variable approach incorporating bar local 

buckling stability constraints based on Eurocode 3 into truss topology optimization models. However, 

Mela's computational model relies on a computationally inefficient mixed-integer programming 

approach, limiting optimization to ground structures with few bars. Therefore, there is a need for a 

computationally efficient optimization model capable of directly incorporating design code buckling 

constraints. 

In this study, we integrate the non-connected and non-convex local stability constraint into the truss 

topology optimization model using an iterative approach. Here, the local stability constraints undergo 

linearization and are tackled through a convex sub-problem. Furthermore, our formulation 

accommodates not only traditional Euler buckling constraints but also more intricate local buckling 

constraints derived from practical design specifications.  

2. Equations 

The truss optimization formulation included kinematic stability and bar local stability can be restated as, 
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where M is the mass of the structure,  is the density of the material (assumed same for all bars),

R dof bN N
B  is the equilibrium matrix, built from the directional cosines of the bars, Rq b fN Nk 

   and 

Rq b fN Nk 

  are the matrixes containing the tension and compression forces under Nf external load 

conditions, respectively. Moreover, Rf dof fN Nk 
  is a matrix containing the external loads, 0   and

0   are allowable tension and compressive stresses, respectively. k

iq ， and 
,

k

iq 
are the tension force 

and compression force of the bar i under loading case kf . Moreover,  1 2, ,...,
T

X,Y X,Y X,Y X,YF F F F dofN
  and, for 

a given node j,  ,0
T

F j j

X Xf ,  0,
T

F j j

Y Yf , where j

Xf  and j

Yf are the magnitudes of the nominal lateral 

force in the x- and y-directions. Further, 
Xd and

Yd are suitable ×dof bN N matrices of bar cosines required 

to determine the component of compression force at each node perpendicular to the y- and x-axial 

respectively. r is the disturbing force coefficient, which takes the value 0.02 in this work. For the 

derivation of the formulations the reader is referred to the literature [22]. 

3. Iterative linearization algorithm 

The critical buckling force exhibits concave behavior concerning the optimization variable, posing 

challenges for efficient results using conventional optimization solvers. Hence, we employ an iterative 

linearization algorithm to address this issue in solving the optimization formulation, outlined as follows: 

(1) Solve the optimization problem (1) for axial forces (
iq ) and sectional areas (

ia ) for each bar. For 

the initial step, allowable tension stress + and compression stress  for material should be used.  

(2) For each compression bar i that is active in the optimized structure, use the axial force (
iq ) to 

compute the critical buckling cross-sectional area ( , cr s

ia ) and the total mass of structure sM , where s is 

the current iteration count.  

(3) For each compression bar i, calculate a new allowable compression stress value ( 1- s

i
， ). In order to 

provide a fully-stressed design, the value of the new stress is taken as 
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where , s

i
  is the compression stress in the bar i at iteration s. 

However, direct use of , 1s

i
   in subsequent iterations is likely to cause cycling to occur if this is 

significantly different in magnitude to , s
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 . Therefore, a relaxation term , the value of which is to be 

taken between 0 and 1, is introduced in the calculation for , s
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 .  has been taken as 0.5 for the problem 

described herein. 
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(4) Compare the previous value of structural mass 1sM  , 2sM  , 3sM  with this found in step (2), sM . If 

M   , where    1 2 3 2 3s s s s s sM M M M M M M          , convergence can be assumed to 

have occurred.   has been taken as 0.001 for the problem described herein. 



Proceedings of the IASS Symposium 2024 

Redefining the Art of Structural Design 
 

 

 4 

 

(5) If the convergence criteria in step (4) are not met, redefine the allowable compression stress
-, , 1s s

i    in accordance with formulation (4) and repeat from step (1). 

4. Numerical examples 

Two truss topology optimization examples are presented to illustrate the effectiveness of the method 

proposed in this study. The differences in the optimization results obtained based on the Euler buckling 

criterion and the structural design code GB5007-2017 are compared. The code is implemented in Matlab 

R2016b, and the LP solver is Mosek version 9.2.47. Mainly results are computed on a desktop with 

AMD Ryzen 7 2700X Eight-Core Processor 3.70 GHz and 32.0 GB of RAM. 

4.1 Shell structure 

As illustrated in Figure1a, the shell structure has a span of 32 m, height of 9.754 m, top sphere radius of 

18 m, and bottom sphere radius of 17 m. Hinges constrain the bottom nodes of the top sphere, limiting 

horizontal and vertical movement. The design domain is subject to a vertically downward load 

conditions 2.5 kN/m² on the full span. For computational simplicity, uniform surface loads are 

transformed into concentrated loads on nodes based on load equivalence principles. Figure1b depicts 

the ground structure, featuring 241 nodes and 1,320 bars. The dome is symmetrically divided into 20 

equal sections, generating a periodic design with a section angle of 18°. Cross-sectional areas and 

allowable stresses of bars at corresponding positions in each section are equalized for computational 

efficiency. Steel tubes are used as bars and only Euler buckling criterion constraint is considered. In 

addition, nominal lateral forces are not considered in the optimisation. Regarding material properties, 

Q355 steel is chosen with an allowable stress of 305 MPa and a Young’s modulus of 210 GPa for this 

numerical example.  

 

Figure 1 Optimized structures of the shell structure: (a) design domain, (b) Ground structure, (c) without local 

buckling stability constraint, (d) with Euler local buckling stability constraint. 

 

Figure 2: Comparison of axial force and critical buckling force of the compression bar: (a) without local buckling 

constraint; (b) with Euler local buckling stability constraint. 

The optimized structure, without considering local buckling constraints, is depicted in Figure1c, 

featuring a mass of M1 = 814.262 kg. The local stability information for the compression bars in Figure1c 

is shown in Figure2a, focusing on the axial forces and critical buckling forces of the 40 largest cross-

sectional areas for clarity. Notably, some compression bars exhibit axial forces surpassing the critical 

buckling force, indicating instability. Conversely, several bars have axial forces significantly below the 



Proceedings of the IASS Symposium 2024 

Redefining the Art of Structural Design 
 

 

 5 

 

critical buckling force, signifying material inefficiency. Subsequently, utilizing the algorithm proposed 

in this study to consider local buckling in the optimization, the resulting optimized structure is illustrated 

in Figure1d, with a mass of M2 = 1,845.1 kg. Moreover, Figure2b displays the axial force and critical 

buckling force of the compression bars. Notably, all bars demonstrate local stability, affirming the 

effectiveness of the Iterative linearization algorithm. 

4.2 L shape truss 

As depicted in Figure 3, a typical 3D L-shape design domain (Figure 3a) provides a further indication 

of the range of applicability of the proposed approaches, where L is taken as 400 mm. Pinned supports 

are denoted by black dots on the top face, while two point loads P = 20 kN are applied downward at the 

tip of the 'L'.The design domain is discretized using 28 neighboring nodes connected by 138 potential 

straight bars to generate a ground structure (Figure 3b). For this numerical example, we utilize Q345 

steel with the following specifications: allowable tensile and compressive stress of 305 MPa, yield stress 

of 345 MPa, density of 7.9 g/cm³, and Young's modulus of 206 GPa. The optimized structures are shown 

in Figure 3c-e. In addition, Figure 4 shows the comparison of axial force, Euler critical buckling force, 

and design code critical buckling force of the bar in the optimized structure. For clarity, only bars with 

a cross-sectional area exceeding 10% of the maximum cross-sectional area are indicated in Figure 4. 

 

Figure 3 Optimization of L-shaped structure [27]: (a) Design domain, (b) Ground structure, (c) the optimized 

structure without local buckling stability constraint (OSWL), (d) the optimized structure with Euler local buckling 

stability constraint (OSEL), (e) the optimized structure with design code local buckling stability constraint (OSDL). 

The blue, red, and green lines represent the compressive bar, the tension bar, and the bar subjected to force only 

under the nominal perturbing force conditions, respectively.  

 

Figure 4 Comparison of axial force and critical buckling force of the optimized structure [27]: (a) optimized 

structure without local buckling stability constraint (OSWL), (b) optimized structure with Euler local buckling 

stability constraint (OSEL), (c) optimized structure with design code local buckling stability constraint (OSDL). 

When neither the Euler local buckling nor design code local buckling constraint is considered in the 

optimization, the optimized structure (Figure 3c) with a mass of MOSWL = 14.344 kg is obtained. However, 

as shown in Figure 3a, almost all of the bars do not meet either the Euler buckling requirements or the 
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structural design code requirements. Obviously, the optimization results cannot be directly used in the 

actual structural design.  

As shown in Figure 3d, when only the Euler local buckling stability constraint is considered in the 

optimization, an optimized structure with a mass of MOSEL = 21.584 kg is obtained, where 

  100% = 50.474%OSEL OSWL OSWLM M M   more material is used to make the bar stable. However, as 

shown in Figure 4b shown, almost all of the bars do not meet the design code requirements. As shown 

in Figure 3e, an optimized structure with a mass of MOSDL = 22.598 kg is obtained when the design code 

buckling stability constraint is considered. Comparing Figure 3d and Figure 3e, it can be seen that the 

topologies of the optimized structures based on Euler local buckling stability constraint and structural 

code local buckling stability constraint are different, which indicates that the optimization algorithm 

proposed in this study has the overall searching ability. 

5. Conclusions 

The primary contribution of this work lies in the proposal of a computational model incorporating bar 

local buckling stability constraints based on the practical design code GB5007-2017. In this truss 

optimization model, the cross-sectional area of the bar serves as the optimization variable, the mass of 

the structure is the optimization objective, and stress, nodal equilibrium, and bar local buckling stability 

serve as constraint conditions. 

Furthermore, the integration of the bar local buckling constraint based on the practical design code 

renders the feasible set of design variables non-connected and non-convex, posing challenges for 

obtaining optimal solutions with existing solvers. To address this issue, a linearized iterative approach 

for modifying allowable stresses is proposed. 

Finally, numerical examples illustrate that a significant portion of bars in the optimized structure, based 

on the Euler buckling criterion, fail to meet the requirements of practical design codes for local buckling 

stability. Additionally, the topology of the optimized truss varies depending on whether the buckling 

constraints are derived from the Euler buckling criterion or from design codes. Consequently, it is 

recommended to directly include local buckling constraints based on the design code in the truss 

topology optimization model. 
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