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Abstract

Vaults serve as efficient solutions for long span building structures. Although various form-finding meth-
ods (e.g., force density method) are available for designing vaults, the need to predefine the connectiv-
ity/mesh at the beginning of the process implies that the resulting designs are unlikely to be minimum
material solutions. This paper puts forward a new family of form-finding methods employing numer-
ical layout optimization. The need for predefined mesh patterns is eliminated via a ‘ground structure’
approach. The formulation is a second-order conic programming problem, thus enabling the identi-
fication of theoretical minimum material designs of vaults by employing high-resolution nodal grids.
To generate more practical, diverse, and (near-)optimum designs, three preliminary studies are carried
out: (a) minimising the number of members; (b) optimising mesh patterns; (c) form alternation via
post-processing techniques. To demonstrate the efficacy of the proposed methods, several numerical
examples are solved.
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1. Introduction
Vaults serve as efficient solutions for long span buildings structures. The forms of vaults are of signif-
icance, as they can be chosen to eliminate bending for maximum structural efficiency. Earlier works
in form-finding can be traced back to the physical-based hanging chain (Antoni Gaudı́), soap film (Frei
Otto) and hanging cloths (Heinz Isler) models in designing funicular structures carrying only compres-
sive forces. Numerical form-finding methods were later developed, the classical approaches can be
categorized in three main families (Adriaenssens et al. [1], Veenendaal and Block [2]): stiffness matrix
methods (Sive and Eidelman [3] ); Geometric stiffness methods such as the force density method (Schek
[4] ) and thrust network analysis (Block and Ochsendorf [5]); dynamic equilibrium methods including
dynamic relaxation (Barnes 1977[6]) and particle-spring system (Kilian and Ochsendorf [7]). Despite
the wide range of methods available, they often require predefined connectivity or mesh to function
effectively, a crucial aspect that will inevitably have potentially significant impacts on the structural ef-
ficiency of the outcome forms. Furthermore, the optimality status of the solutions generated by these
methods remains undiscovered, as none of them are capable of identifying or predicting the theoretical
minimum material designs. Particularly given the climate crisis, and the urgent need to reduce embod-
ied carbon associated with building structures, it is important to obtain theoretical minimum material
designs, which can then be utilized as benchmarks to evaluate the structural efficiency of the designs
obtained via classical form-finding methods.
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To obtain the theoretical minimum material designs of vaults, here a new family of form-finding meth-
ods employing numerical layout optimization (Dorn et al. [8], He et al. [9]) is put forward. The method
has previously been applied to form-finding problems for arch structures, using the transmissible load
concept (Darwich et al. [10]). However, the solutions obtained may comprise multiple surfaces; further-
more, the use of 3D design spaces increases computational cost. Jiang [11] introduces a reduced ground
structure with an aim to improving computational efficiency, albeit at the expense of sacrificing its math-
ematical rigour of attaining theoretically minimum solutions due to the heuristics involved. Recently,
a theoretical breakthrough was made by Bołbotowski [12], who reformulated the form-finding problem
as a second order conic programming (SOCP) problem involving 2D design spaces, which was later
articulated by He et al [13, 14]. The reformulated optimization problem is convex, so globally optimal
solutions are guaranteed, which means that the resulting vaults are minimum material designs, with max-
imum stiffness, for a given ‘ground structure’. High-precision numerical benchmarks for theoretically
minimum material designs can therefore be generated by employing high-resolution nodal grids.

The resulting vault designs generated via layout optimization often exhibit complex structural forms
resembling the Michell continua (Michell [15]), for this reason, it has primarily been utilized as bench-
marks rather than being applied in more practical designs. This paper therefore explores several sim-
plification techniques to enhance the practicality of vault layout optimization, involving an extension of
the formulation to control specific features of the structure, including the total number of members and
mesh patterns. This results in a mixed-integer SOCP problem, ensuring global optimum solutions, albeit
with an associated escalation in computational costs. Furthermore, a post-processing step is employed
to alter the vault designs through mesh refinement and re-optimization. Given its heuristic nature, it
yields only local optimum solutions. The simplification and post-processing approaches offer a means
of generating a gallery of vault designs by experimenting with a range of input parameters, while their
structural efficiency is assessed using benchmark solutions provided by standard layout optimization
techniques.

The paper is organised as follows. In section two, the standard vault layout optimization procedure
is briefly outlined. In section three, the proposed simplification and post-processing techniques are
described. In section four, numerical examples are solved to demonstrate the efficacy of the methods.
Finally, in section five, key conclusions are drawn.

2. Vault layout optimization
The layout optimization process for vaults involves a number of steps, as shown in Figure 1. Firstly the
design domain, load and support conditions are specified, Figure 1(a). Secondly, the design domain is
discretized using nodes, Figure 1(b). Thirdly, these nodes are interconnected with potential members
to create a ‘ground structure’, Figure 1(c). Finally, the optimal structural layout and nodal elevations
are identified by solving a second order cone programming (SOCP) problem, Figure 1(d), which is
formulated as:

Prob. 1 :

min
qxy,qz,r

V =
1

σ
lTxy (qxy + 2r) (1a)

s.t. Bxyqxy = 0 (1b)

Bzqz = fz (1c)

2rqxy ≥ q2z , for all members, (1d)

2



Proceedings of the IASS Annual Symposium 2024
Redefining the Art of Structural Design

?
(a) (b) (c) (d)

Figure 1: Vault layout optimization steps: (a) specify design domain, loads and supports; (b) discretize
domain using nodes; (c) create the ‘ground structure’ by interconnecting nodes with potential members;
(d) use optimization to identify the optimal vault layout and nodal elevations

where, V is the total structural volume; σ is the limiting compressive stress; lxy is a m × 1 vector
of projected member lengths on the xy plane, where m is the number of members. qxy and qz are
m × 1 vectors represent, respectively, the resolved member internal forces on the xy plane and z axis,
as shown in Figure 2(b); Bxy is a 2n × m equilibrium matrix on the xy plane and Bz is a n × m

equilibrium matrices in the z axis, where n is the number of nodes. r is an auxiliary variable introduced
to simplify the optimization problem, interested readers can refer to Bołbotowski [12] and He et al. [14]
for details. Note that design variable lz shown in Figure 2(a) is not explicitly included in the formulation
(1). Nevertheless, it can be calculated when the optimization is solved, using lz/lxy = qz/qxy. Then the
optimum nodal elevations can be obtained.

(a) (b)
Figure 2: Variables of a single member: design variable lz , and state variables qxy, qz

Formulation (1) is a SOCP problem, therefore the global optimality of the solution obtained for a given
‘ground structure’ (e.g., Figure 1(c)) is mathematically guaranteed (i.e., the design consuming the least
amount of material is found). Unlike classical form-finding methods, here an initial mesh or connectiv-
ity is not required; instead, the layout optimization process will identify the optimum member layouts
from the ‘ground structure’ - a significant increase of design freedom compared with the classical meth-
ods. The solutions of the layout optimization will converge to the theoretical minimum material design
when finer nodal grids are utilized. Figure 3 illustrates a convergence study utilizing an extrapolation
scheme (see Darwich et al. [10], Bołbotowski et al. [16]), where highly accurate numerical solutions
are obtained.

It can be observed from Figure 3 that layout optimization solutions with a high resolution nodal grid
resemble the so-called Michell continua (Michell [15]), formed with infinitely small members. The
solutions provide theoretical minimum material designs, which can therefore be used as benchmarks to
evaluate the structural efficiency of designs generated via other methods.

While the standard layout optimization method produces efficient vault designs, the solutions often
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Figure 3: Square domain under pressure load p (He et al [14]): optimum volume v.s. nodal refinement
(nodal divisions considered within a quarter domain due to symmetry)

exhibit highly complex forms. To generate more practical, diverse, and (near-)optimum designs, simpli-
fication and post-processing techniques are introduced below.

3. Simplification techniques
3.1. Simplification by reducing the number of members

A simple approach to improve practicality in layout optimization is to use mixed integer programming
(MIP), where each member is associated with a Boolean variable indicating its existence (see, e.g, Fair-
clough and Gilbert [17]):

qzi ≤ tiδmax, for i ∈ {1, 2, ...,m}, (2)

where ti ∈ {0, 1} is a Boolean variable, δmax is a sufficiently large positive constant. Therefore, the total
number of members can be expressed as:

M =

m∑
i=1

ti (3)

where M is the total number of members, which can be used as the new objective function:

Prob. 2 :

min M (4a)

s.t. V ≤ Vref (4b)

Constraints (1b), (1c), (1d) and (2), (4c)

where Vref is a reference volume.

3.2. Simplification by identifying optimum mesh patterns

Instead of employing a fully connected ‘ground structure’, another practical approach is to formulate
a mesh optimization problem. This is achieved by restricting the ‘ground structure’ to consist only of
short members and subsequently determining the optimal mesh patterns associated with it. An example
is shown in Figure 4. A level 1 connectivity (Figure 4(b)) has two mesh variations (Figure 4(c)); and
the design freedom is increased (i.e., more mesh variations) when the connectivity level is increased, see
Figure 4(d) and (e). To identify the optimum mesh pattern, the following constraint is considered:
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(a) (b) (c) (d) (e)
Figure 4: Varying connectivity in the ‘ground structure’: (a) fully connected; (b) and (c), level 1 connec-
tivity and two potential mesh patterns; (d) and (e), level 2 connectivity and one potential mesh patten

Pt ≤ pdef, (5)

where P is a mesh connectivity matrix specifying the all connected members in each mesh pattern,
t = [t1, t2, ..., tm]T is a vector containing Boolean variables associated with each member; pdef is a
mesh definition array specifying the number of members required to form each mesh configuration.
Constraint (5) can be used in conjunction with Prob. 1 or 2, for example:

Prob. 3 :

min V (6a)

s.t. Constraints (1b), (1c), (1d), (2) and (5), (6b)

which identifies an optimum mesh pattern for the minimum material design.

3.3. Form alternation via post-processing steps

The optimal layout or mesh identified through layout optimization can be utilized as initial input for
classical form-finding methods, leading to a post-processing step that can generate various forms con-
tributing to a diverse design gallery. For sake of simplicity, here the force density method (FDM) is
employed. The main steps are as follows:

1. Obtain a benchmark solution by solving the standard vault layout optimization problem (Prob. 1)
employing a fine nodal grid in the ‘ground structure’.

2. Generate a (near-)optimum vault structure by solving any of the extended vault layout optimization
problems (Prob. 2 or 3).

3. Obtain an initial connectivity/mesh for FDM by extracting members with non-zero area from the
(near-)optimum vault.

4. Assign force density to all members, considering one of the following scenarios:

• each member has a force density identical to that of the (near-)optimum vault.

• assign a unit force density to all members.

• members are firstly grouped using e.g., K-means clustering algorithm, based on their areas
in the (near-)optimum vault; then each group is assigned an average force density.

5. Optimize the force density in each scenario by solving a linear search problem: min
α

V (αfd),
where α is a multiplier to be optimized, fd is the force density vector obtained in the previous step.

6. Evaluate structural efficiency of all designs using the benchmark in step 1.
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4. Numerical examples
To demonstrate the efficacy of the methods, several examples are solved.

4.1. Eight-sided vault

The example considers an eight-sided domain with pin supports at all corners. A benchmark solution
is obtained by solving Prob. 1 using a relatively fine nodal grid. Taking advantage of symmetrical
conditions, only one-eighth of the domain is modelled, resulting in 1,326 nodes and 878,475 potential
members in the ‘ground structure’. The reported optimum volume is V0 = 6.63pL3/σ (Figure 5), where
L is the length of domain edge, p is the magnitude of the area load.

(a) (b)
Figure 5: Eight-sided vault, benchmark solution, V = 6.63pL3/σ: (a) top view of optimum vault layout;
(b) 3D view

4.2. Minimizing number of members

Prob. 2 is solved to generate simpler designs by minimizing the number of members subject to small
volume increase. Note that since integer programming is computationally expensive (as shown in various
studies, e.g., in Fairclough and Gilbert [17], Nanayakkara et al. [18]), here only a coarse nodal grid is
considered. The solutions are shown in Figure 6. It can be observed that the designs exhibit significant
variation as the volume increases. Furthermore, the solutions are no longer single-layered, indicating an
area for improvement in future work.

(a) (b) (c)
Figure 6: Eight-sided vault, minimizing number of members by solving Prob. 2 subject to small volume
increase ratio: (a) 1%; (b) 5% ; (c) 10%
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4.3. Identifying optimum mesh patterns

Similarly, Prob. 3 is solved to identify optimum mesh patterns.The outcome structures obtained using
level 1 and 2 connectivities remain similar, see Figure 7(a) and (b), although the former is more compu-
tationally efficient than the latter. Therefore, a finer nodal grid is employed in Figure 7(c), resulting in a
design that is slightly more efficient but also more complex.

(a)

(b)

(c)
connectivity top view 3D view

Figure 7: Eight-sided vault, identifying mesh patterns by solving Prob. 3. (a) level 1 connectivity,
V = 1.003V0; (b) level 2 connectivity, V = 1.003V0; (c) level 1 connectivity with a finer nodal grid,
V = 1.002V0

4.4. Post-processing step

The post-processing technique described in Section 3.3. is utilized to generate diverse designs. The
solutions are shown in Figure 8. In (a), each member has force density identical to that of the (near-
)optimum vault; therefore the resulting layout closely resemble the initial design. In (b), a unit force
density is assigned to all members, leading to a significantly different form. In (c), members are catego-
rized into three groups via the K-means clustering algorithm; each group of members shares an averaged
force density. This generates a slightly more efficient design than (b). It is worth noting that, despite
their varying forms, all the results remain structurally efficient designs, exhibiting only minor deviations
compared to the benchmark.

5. Conclusion
In this paper, a new family of form-finding methods employing numerical layout optimization is in-
troduced. The standard vault layout optimization is extended to generate more practical and diverse
(near-)optimum designs. The main conclusions are as follows:

• Vault layout optimization is a highly efficient form-finding method that is capable of identifying
theoretical minimum material designs of vaults.
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(a) (b) (c)
Figure 8: Eight-sided vault, post-processing via FDM: (a) each member has force density identical to that
of the (near-)optimum vault, V = 1.011V0; (b) all members have the same force density, V = 1.028V0;
(c) using three member groups, V = 1.026V0

• Preliminary studies show that diverse (near-)optimum vault designs can be generated by (a) min-
imising the number of members; (b) optimising mesh patterns; (c) post-processing the optimum
layout via classical form-finding methods.
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