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Abstract

Tensile membrane structures (TMS) offer an aesthetically pleasing and functional solution for cover-
ing large spaces like stadiums, public areas, and amphitheaters. However, the inherent uncertainties
associated with TMS make the efficient design of these structures challenging. Uncertainties arise due
to the complex material behavior, estimation of wind and snow loads, challenges in form finding, ap-
plication of prestress and construction. The prevailing design methodology for TMS involves a stress
factor approach, where the permissible stress of the material fabric determines the structural design.
This approach differs from the limit state methodologies that prioritize achieving a target reliability. The
first-order reliability method (FORM) is commonly used to find the reliability of any structure for its
simplicity and efficiency. However, assumptions are made on the shape of the failure surface or limit
state surface which can lead to inaccuracies in safety assessment. Furthermore, while Monte Carlo
simulation (MCS) methods can yield reliable results, they demand extensive evaluations of the limit
state function, resulting in high computational costs (sometimes unmanageable for large and complex
structures). In this study, the reliability analysis of diverse TMS shapes is comprehensively examined,
exploring the use of a metamodeling approach while ensuring both efficiency and accuracy of the so-
lution. The studied TMS include both frame and cable-supported structures across various limit states,
and are compared with both the FORM and MCS results.

Keywords: tensile membrane structures, reliability analysis, surrogate model, metamodel, kriging

1. Introduction
Tensile membrane structures (TMS) are innovative and lightweight architectural solutions that offer
designers the freedom for creative and dramatic artistic expressions. TMS have found their diverse
applications in various structures, including light canopies, airport terminals, sports stadiums, and more.
The fundamental elements of a TMS include a highly flexible fabric held under tension to provide
structural stiffness, one-dimensional flexible elements like cables to form ridges and boundaries, and
rigid support members to sustain compression and bending forces. The prestress in fabric membranes
is achieved through the application of forces at the boundaries, ensuring the membrane’s stability and
performance (Lewis [1]).

Tensile membrane structures (TMS) are becoming more popular in developing economies such as In-
dia, because they are cost-effective and attractive. However, they are complex to design and construct,
which increases the risk of failure. The adoption of TMS has not been as extensive as expected, when
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compared to some other popular materials like concrete or steel. One of the main reasons behind this
may be that the design philosophy of TMS has not been standardized in most of the countries. Besides,
wherever such standards exist, they follow highly conservative and non-economic practices. In Europe,
CEN/TC/250 WG5 has been working on standardization of TMS and has recently published a technical
specification [2]. Similar limit states based design specifications following the LRFD format need to
be developed for many countries. Considering that this will indispensably require a large number of
reliability analyses, the current study’s focus rests on developing an efficient reliability analysis strategy
for various limit states of TMS.

A preliminary reliability study of TMS was carried out by Gosling et al. [3] relying on the first-order
reliability method (FORM). Reliability-based optimization methods were discussed by Dutta et al. [4].
More recently, reliability analysis for code calibration has been studied by De Smedt et al. [5]. Te-
ichgräber et al. [6] and Fusseder et al. [7] explored the ambiguity in nonlinear structural models for
reliability-based code calibration. Additionally, Thomas and Schoefs [8] and Thomas et al. [9] con-
ducted reliability analyses of pneumatic tensile structures. Most of these studies used FORM for reli-
ability analysis of TMS. FORM gives an approximate estimate of the structure’s probability of failure.
While probabilistic simulations, such as Monte Carlo simulation, can give accurate estimates, they are
computationally expensive because of the thousands (or even millions) of structural analyses involved.
For the reliability analysis of TMS, we need methods that are computationally affordable while accept-
ably accurate as well.

The current study focuses on developing an efficient reliability analysis methodology for TMS by adopt-
ing metamodeling or surrogate modeling techniques. The rest of this paper is organized as follows.
Sec. 2. briefly describes the current approach to form-finding, analysis, and design of TMS. The basics
of reliability analysis and metamodeling strategies that can be used for reliability analysis is elaborated
in Sec. 3. and the case studies are illustrated in Sec. 4.. Finally, Sec. 5. concludes the key findings of the
study.

2. TMS Design
Design of membrane structures involves a three-step process consisting of form-finding, load analysis
and patterning. TMS possess unique shapes that cannot be described by simple mathematical functions.
Before analysing the structure subjected to external loads such as wind or snow (i.e., load analysis), the
initial stable shape of the structure under pretension forces must be found. This process is known as
form-finding, where the initial shape is determined to achieve equilibrium with the prestressing forces
and boundary conditions. Due to their flexibility, TMS exhibit visible load-shape interactions. As loads
are accommodated, the TMS membrane experiences changes in surface tension and significant displace-
ments, leading to geometrically nonlinear behavior. Even under working loads within the elastic limit,
these large deflections necessitate accounting for overall geometry changes in the analysis, including the
identification of wrinkling directions, if present. For TMS construction, the three-dimensional shape of
the tensioned surface must be translated into two-dimensional cutting patterns through a process known
as patterning. This step requires precision to cut the fabric into strips with minimal material wastage
and distortions.

2.1. Form-finding using the updated weight method

Form-finding methods for TMS include physical models, force density method, dynamic relaxation,
geometric stiffness methods, and optimization-based methods. An example of an optimization-based
method is the updated weight method (UWM), which has been observed to be robust. In this approach,
the energy functional for a cable-supported TMS is expressed as the combination of two parts: (i) the
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energy associated with membrane prestress and (ii) the energy stemming from cable prestress. In UWM,
this energy functional is minimized, with the objective function defined as a weighted expression of the
structural configuration:

fUW =

Na∑
i=1

3∑
j=1

W j
i (L

j
i )

2 +

Nc∑
i=1

wil
2
i (1)

For each ith constant-strain triangular (CST) element discretizing the membrane, Lj
i and W j

i denote the
pseudo-cable side length and the side weight, respectively, of the jth side (j = 1, 2, 3). The boundary
cables’ weight and length are denoted by wi and li, respectively. The summation encompasses all Na

membrane CST elements and Nc boundary cable elements. Details of UWM implementation for diverse
TMS types can be found in the works of Marbaniang et al. [10].

2.2. Static load analysis using the modified minimum potential

TMS undergo noticeable deformations when subjected to wind pressure or snow loads, involving a
complex relationship between their shape and the applied forces. This aspect needs to be taken into
account when performing reliability analysis with limit states defined by these loads (Dutta et al. [4]).
The load analysis of a form-found TMS can be conducted by minimizing a modified energy functional
with respect to the material fiber basis direction, as outlined in detail by Marbaniang et al. [11]. In their
method, adopted in the present, the membrane is again modeled using CST elements, while boundary
cable elements are modelled using a two-noded line element. The form-found shape using UWM is
used as the prestressed reference configuration for the load analysis. The modified potential energy is
defined with respect to this configuration, using a total Lagrangian approach. The external loading is
applied to the membrane surface as distributed vertical loads (dead or snow loads) or pressure normal to
the surface (wind loads). The equilibrium initial prestress is also incorporated into the potential energy
and the wrinkling state check as described in Marbaniang et al. [11]. The state of stress for an element
can be either taut (biaxial tension), wrinkled (uniaxial tension) or slack, determined by the following
criteria:

Taut: Smin > 0

Wrinkled: Smin ≤ 0 and Emax > 0

Slack: Emax ≤ 0

(2)

where, Smin and Emax, respectively, are the minimum principal (second Piola-Kirchoff) stress and the
maximum principal (Green-Lagrange) strain with respect to the reference configuration.

2.3. Design process

In TMS design, ensuring structural integrity involves maintaining structural responses within acceptable
limits. These structural responses include stress levels, deflections, and wrinkling/slacking/ponding.
Achieving structural integrity in a TMS design involves selecting the appropriate membrane materials,
determining the required prestressing forces, and establishing suitable boundary conditions. The domi-
nant design methodologies for TMS today rely on an approach known as the permissible stress or stress
factor approach. The induced stresses due to the external loads is made sure to be within the permissible
limits. In this approach, the fabric’s strength is reduced by certain factor to establish a permissible stress
threshold. This permissible stress value is then compared to the maximum fabric stress values obtained
from a load analysis using unfactored (characteristic) loading conditions. The chosen stress factor im-
plicitly accounts for various uncertainties, such as variations in material property, loading conditions,
long-term material wear and tear, and construction tolerances. Engineering communities worldwide
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have adopted a variety of alternative stress factors, derived through diverse methodologies (Gosling et
al. [3]).

3. Structural reliability analysis
Reliability-based design in structural engineering involves accounting for inherent uncertainties in de-
sign parameters, “scientifically”. By incorporating probabilistic models and partial safety factors, it aims
to control the probability of failure to meet desired safety levels. This approach allows for optimized
resource allocation and risk-based decision-making, although it requires more data and more complex
calculations to arrive at the design safety factors than the deterministic design methods.

Each possible failure mode of a structure corresponds to specific limit states, which serve as critical
conditions beyond which the structure is no longer capable of performing its intended function or has
experienced failure. The mathematical expression linking the structural resistance to the applied loads is
termed as the performance function, or more commonly, the limit state function. It forms a hyper-surface
in the probability space that distinguishes safe and unsafe designs. As both load and resistance parame-
ters are inherently random variables, the performance function itself is also a random variable. In mathe-
matical terms, the limit state function is expressed as g(R,S), with R and S representing resistance and
load variables, respectively. The probability associated with the limit state function taking a negative
value is referred to as the probability of structural failure. Often represented as Pf = P(g(x) < 0), this
probability serves as a crucial measure for evaluating the reliability and safety of engineered structures.

The assessment of structural safety and performance is also quantified through the reliability index (β).
The Eurocode [12] defines reliability as the ‘ability of a structure or a structural member to fulfil the
specified requirements, including the design working life, for which it has been designed.’ The reliability
index for a specific limit state can be related to the corresponding probability of failure using the standard
normal operator Φ:

Pf ≈ Φ(−β) (3)

In most practical cases, the limit state will be nonlinear and hence a first-order approximation is sought
at the ‘design point’ which is found by a constrained minimization of the distance from origin. These
methods come in the class of first-order reliability methods (FORM) and works very well for limit states
that are mildly nonlinear and composed of Gaussian or close-to-Gaussian random variables. However,
for heavy-tailed non-standard distributions or correlated random variables, FORM can lead to inaccurate
reliability estimates.

To overcome these issues, numerical probabilistic simulation methods, such as the Monte Carlo simula-
tion (MCS), have remained popular in practical reliability analyses. MCS is a robust and versatile tool
for probabilistic simulation, and is resilient to factors like nonlinearity and the order of the limit state
function, correlation among variables, and the distribution types of random variables (RVs). However,
its strength comes at a cost – it is computationally expensive. For instances where the probability of
failure (Pf ) is in the range of 10−6 to 10−4, millions of simulations are often necessary, each involving
a deterministic structural analysis. Particularly for intricate finite element (FE) models of structures, a
“crude” approach to MCS may not be realistically feasible due to its cost and complexity. In case of
TMS reliability analysis, both form-finding and load analysis are computationally expensive, making
the adoption of MCS a very costly proposition in practical applications.

3.1. Metamodels

Metamodeling, also known as surrogate modeling, is a technique used for simplifying the large num-
ber of performance function evaluations in simulation based reliability analysis. It involves building a
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simplified model, called the metamodel or surrogate model, which approximates the behavior of a more
complex and computationally expensive model or system. Instead of using the original model which
might be computationally expensive and time-consuming, probabilistic simulations such as MCS are
performed on the matamodel, reducing the computational cost and time required significantly.

To create a metamodel, an experimental design is chosen using sampling techniques, e.g., Latin Hyper-
cube sampling, and are evaluated using the original structural model. This input-output data is trained
using a “machine learning” model, such as regression, polynomial chaos expansion, kriging and its com-
binations, support vector regression, or neural networks. In this study, kriging [13] is used for obtaining
the metamodel. A kriging metamodel MK(x) can be described by [14]

MK(x) = βTf(x) + σ2Z(x, ω) (4)

where, βTf(x) =
∑P

j=0 βjfj(x) is the mean value of the Gaussian process (i.e., its ‘trend’), consisting
of P arbitrary functions such as polynomials (fj ; j = 1, . . . , P ) and the corresponding coefficients
(βj ; j = 1, . . . , P ). σ2 is the variance of the Gaussian process and Z(x, ω) is a zero-mean, unit-
variance, stationary Gaussian process. ω is the underlying probability space with hyperparameters θ and
is defined in terms of a correlation function R = R(xi, xj ; θ) that describes the correlation between two
sample points xi and xj in the input space.

The Gaussian assumption leads that the vector formed by the prediction at a new design point x, i.e.,
Ŷ (x) and the true model responses Y , has a joint Gaussian distribution defined by{

Ŷ (x)

Y

}
∼ N

({
fT(x)β

Fβ

}
, σ2 =

[
1 rT(x)

r(x) R

])
(5)

where,

• F is the observation (design) matrix of the Kriging metamodel trend,
Fij = fj(x

(i)), i = 1, . . . , N ; j = 0, . . . , P

• r(x) is the vector of cross-correlations between the prediction point x and each one of the obser-
vations, ri = R(x, x(i); θ), i = 1, . . . , N

• R is the correlation matrix with elements: Rij = R(x(i), x(j); θ), i, j = 1, . . . , N

The prediction follows a normal distribution Ŷ (x) ∼ N (µ̂Y (x), σ̂
2
Y (x)) in which the mean and the vari-

ance are conditional on the observed data X and Y:

µŶ (x) = f(x)Tβ̂ + r(x)TR−1(Y − Fβ̂) (6)

σ2
Ŷ (x)

= σ2
(
1− rT(x)R−1r(x) + uT(x)(F TR−1F )−1u(x)

)
(7)

where β̂ = (F TR−1F )−1F TR−1Y is the generalized least-squares estimate of β and u(x) = F TR−1r(x)−
f(x).

Kriging stands out as one of the most extensively utilized metamodels in reliability analysis. Notably, it
offers an estimation of uncertainty associated with the metamodel prediction, a crucial aspect in reliabil-
ity analysis. Despite the complexity involved in constructing this metamodel, readily available software
packages like the UQLab Kriging module ([14]) simplify the process, making it accessible for practical
applications.
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4. Case studies
This section illustrates the reliability analysis of two TMS using kriging metamodels. The two TMS are
adopted from the work of Gosling et al. [15]. These are relatively simpler forms of TMS where FORM
has been found to work acceptably and no significant advantage of metamodeling can be expected over
the simple FORM-based reliability analysis. However, this will allow a comparison between the two
methods in terms of their accuracy, where the MCS is assumed to give the most accurate reliability
estimates.

Two load cases are considered for these case studies: (i) snow load acting vertically downward under
gravity and (ii) uniform wind uplift that acts normal to the surface of the membrane. Prestressing forces
are applied before applying wind or snow loads. In these case studies, two critical limit states are
examined. The stress criterion, denoted as LSF1, mandates that the maximum principal stress (σmax)
within the membrane must not surpass the permissible fabric strength (σper). This permissible strength
is taken as the tensile strength of the fabric divided by a stress reduction factor. On the other hand, LSF2
or deflection limits, require that the maximum nodal displacement (δmax) remains within the predefined
allowable displacement threshold (δall). This threshold is arbitrary and can be set to prevent clashes with
the support structure and avoid issues like ponding. One should, however, note that membrane structures
are known to deform significantly under applied wind or snow loads, and in some cases, a higher limit
of allowable displacement may be considered.

For the reliability analysis of TMS, deterministic and probabilistic parameters are primarily sourced
from a round-robin exercise (De Smedt et al. [16]) and presented in Table 1. Poisson’s ratio is chosen
as 0.4 and a reduction factor of 5 (De Smedt et al. [5]) applied to the ultimate fabric strength. Material
strength and their distribution type are obtained from PD CEN/TS 19102:2023 [2], whereas their mean
and standard deviation are calculated based on the JRC report [17].

To establish a benchmark for the reliability index, Monte Carlo simulation is performed using 100,000
Latin hypercube samples (LHS). Reliability analyses employing FORM and the kriging metamodel are
conducted using UQLab, a widely-used Matlab toolbox for uncertainty quantification ([18]).

Table 1: Statistical characteristics of design variables (adopted from De Smedt et al. [16])

Variable Distribution Mean (µ)
Standard
deviation (σ)

Unit

Prestress in warp direction (Pwarp) Normal 4 0.75 kN/m
Prestress in fill direction (Pfill) Normal 4 0.75 kN/m
Stiffness in warp direction (Ewarp) Normal 600 40 kN/m
Stiffness in fill direction (Efill) Normal 600 40 kN/m
Shear modulus (G) Normal 30 3 kN/m
Snow load (Qs) Gumbel 0.66 0.198 kN/m2

Wind load uplift (Qw) Gumbel 0.7 0.245 kN/m2

Tensile strength (σ) for Type I PES/PVC Lognormal 55 3.04 kN/m
Tensile strength (σ) for Type II PES/PVC Lognormal 80 6.08 kN/m

4.1. Case study 1: Hypar TMS

A hyperbolic paraboloid (‘hypar’) is a simple anticlastic shape commonly emplyed in TMS The chosen
hypar is characterized by alternating high and low points. This is a square hypar measuring 6 m on
each side with a 2 m height difference between the low and high points (Fig. 1) (Gosling et al. [15]).
This is a cable-supported TMS with a cable diameter of 12 mm with an elastic modulus of 205 kN/mm2,
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Figure 1: Cable supported ‘hypar’ TMS (adopted from Gosling et al. [15])

and a cable force of 30 kN. The analysis encompasses two limit states, considering material strength
corresponding to Type I PVC coated polyester (PES/PVC) fabrics. Its maximum allowable deflection
(δall) is considered as 100 mm.

The reliability indices (β) obtained through simulation, FORM and kriging metamodel, for both snow
and wind load cases, are tabulated in Table 2. This table also shows the relative error in the FORM-based
and kriging-based estimates, with respect to the MCS based reliability values. It can be clearly observed
that reliability indices found using the kriging metamodel approach is more accurate than that found
using FORM.

Table 2: Reliability indices for hypar TMS and error in the FORM- and metamodel-based estimates
Load case MCS FORM Metamodel

βMCS βFORM Relative error (%) βMetamodel Relative error (%)
LSF1: Stress criterion (σmax ≤ σper)
Snow 2.48 2.68 8.06 2.55 2.98
Wind 1.97 2.08 5.95 1.99 1.05
LSF2: Deflection control (δmax ≤ δall)
Snow 1.54 1.58 2.62 1.55 0.76
Wind 1.38 1.43 3.20 1.39 0.66

4.2. Case study 2: Conic TMS

Figure 2: Frame supported ‘conic’ TMS (adopted from Gosling et al. [15])

The second example is that of a frame-supported conic adopted from Gosling et al. [15]. The structure
is a high-point structure having a square base of 14 m× 14 m with a fixed circular head ring of diameter
5 m at a height of 4 m above the base (Fig. 2). The membrane material is assumed as Type II PES/PVC
fabric and all other parameters remain the same as in Case Study 1. The maximum allowable deflection
is assumed to be 200 mm.

The results of the reliability analysis for MCS, FORM and metamodel is given in Table 3 for both snow
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and wind loads. Similar to the hypar TMS of Case Study 1, it is seen here that the relative error for
the metamodel approach is less than the FORM-based estimation, for both limit states LSF 1 and LSF
2. FORM-based estimates show a significantly high maximum error of (approximately) 45% while the
maximum error for the metamodel is at (approximately) 17%. This clearly highlights the effectiveness
of using the suggested metamodel approach over FORM. Furthermore, it underscores the simplicity
and straightforwardness of its application, making it a highly advantageous choice in TMS reliability
analysis.

Table 3: Reliability indices for conic TMS and error in the FORM- and metamodel-based estimates
Load case MCS FORM Metamodel

βMCS βFORM Relative error (%) βMetamodel Relative error (%)
LSF1: Stress criterion (σmax ≤ σper)
Snow 1.05 1.52 44.97 1.23 17.21
Wind 1.83 2.01 10.21 1.89 3.52
LSF2: Deflection control (δmax ≤ δall)
Snow 2.13 2.21 3.99 2.09 1.65
Wind 2.15 2.11 2.13 2.14 0.58

5. Conclusion
Reliability analysis plays a crucial role in understanding and mitigating the complexities of TMS failures.
Despite the high frequency of TMS failures, there is a scarcity of comprehensive studies addressing this
issue. One of the primary reasons for this may be the computational complexities involved in conducting
a thorough reliability analysis for these highly nonlinear structures.

The application of a metamodeling approach emerges as a promising solution. This work shows that
the adopted kriging metamodeling technique yields more accurate results as opposed to approximate
methods such as FORM. On the other hand the computational savings are significant as compared to
MCS or LHS. This study underscores the efficacy and simplicity of the metamodeling approach in TMS
reliability analysis.

Future works in this direction should focus on more complex TMS problems and other metamodeling
approaches.
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