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Abstract 

Cable-strut structures with sliding cables have been used in various fields. Form-finding (i.e., 

determining the initial shape and force distribution) is a key issue in the design of cable-strut structures. 

There have been a number of form-finding methods for normal cable-strut structures, but the form-

finding of them with sliding cables has been seldom studied. The main difference in the form-finding of 

cable-strut structures with sliding cables is that the forces of the segments that belong to the same sliding 

cable should be identical. In the application of existing cable-strut structures with sliding cables, they 

are mainly generated by replacing the adjacent cables with the same force by continuous sliding cables 

based on structural symmetry. In this paper, a general energy-based form-finding method of cable-strut 

structures with sliding cables is proposed. The potential energy function of sliding cables is derived, and 

the equilibrium equations of the system are obtained based on the principle of stationary energy. The 

LM algorithm is used to solve the equilibrium equations. Various numerical examples are adopted to 

demonstrate the effectiveness and practicality of the proposed method. The results show that the 

proposed method has a good convergence property and can find different configurations of cable-strut 

structures with sliding cables. 

Keywords: cable-strut structures, sliding cable, form-finding.  

1. Introduction 

Cable-strut structures, including cable trusses, cable domes, and tensegrity, are composed of cables in 

tension and struts in tension. Cable-strut structures have been widely used in the field of structural 

engineering due to their lightweight and large span. Sliding cables are sometimes used in cable-strut 

structures. In suspended dome structures, the application of sliding cables can reduce the peak structural 

internal force and improve the mechanical properties under asymmetric loading [1]; in active-controlled 

structures with sliding cables (clustered tensegrity), the number of active cables can be reduced[2, 3]; In 

bridges and high-rise buildings, the frictional dissipation of energy by sliding cables can be utilized to 

improve the dynamic performance of the structure [4-6]. 

Determining the initial shape and force distribution is a key step in the design of cable-strut structures. 

Existing methods can be divided into two main categories. The first one is called force-fiding, which is 

to determine the force distribution based on given structural shapes. The second one is called form-

finding, which finds the shape and force simultaneously. The basis of force-finding is the equilibrium 

matrix analysis theory of pin-jointed systems[7-9]. A series of orthogonal base vectors satisfying the 

equilibrium equations can be obtained by singular value decomposition (SVD) of the equilibrium matrix, 

and they are defined as self-stress modes. The force-finding always falls into the optimization of the 

combination coefficients of self-stress modes, and different objective functions have been utilized, such 

as the global stiffness[10], the variation of internal forces[11], and the structural total mass[12-14]. The 

number of unknown parameters (element forces and nodal positions) exceeds the number of equations 

(equations equations), and thus additional conditions should be given in the form-finding procedures. 
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Different methods have been developed when different additional conditions are provided, such as the 

force density method [15, 16], the dynamic relaxation method[17], the nonlinear finite element 

method[18, 19], and heuristic algorithms[20, 21].  

Despite the developments of form-finding of cable-strut structures, the form-finding of cable-strut 

structures with sliding cables has not been considered. The existing applications of the sliding cables are 

based on the structural symmetry or designing experience[22-25]. The main designing process is 

replacing the adjacent cables with the same forces as sliding cables without influencing the structural 

equilibrium. Yu[26] solved for the combination coefficients of self-stress modes that make the forces of 

specified adjacent cables identical, to achieve the condition of applying sliding cables, but whether the 

solution exists or not depends on the initial given structural shape. Due to the lack of form-finding 

methods for cable-strut structures with sliding cables, the structural forms and their application scenarios 

are very limited. In this paper, a novel energy-based form-finding method of cable structures with sliding 

cables is proposed, the main idea is to find the structural shape based on given cable forces. By assigning 

special internal force distributions, the conditions for the use of sliding cables can be satisfied.  

This paper is organized as follows. Section 2 gives the basic assumptions, the mathematical model, and 

the solving method. In Section 3, several numerical examples are adopted to show the ability of the 

method to find structural forms with sliding cables. In section 4, a typical physical model is built to 

demonstrate the feasibility of the methods. Finally, Section 5 concludes this paper.  

2 Method  

2.1 Basic assumptions 

The following assumptions are adopted in this paper:  

(1) The elements are linear elastic and bear only axial forces. 

(2) No element failures nor strut buckling occurs. 

(3) There are no frictions between the cables and nodes.  

Note that assumption (3) does not affect the correctness of the form-finding result when considering the 

friction. If a cable-strut structure with sliding cables is in equilibrium without friction, the structural 

equilibrium must be satisfied when considering friction.  

2.2 Potential energy function 

Suppose the cables give forces as ideal elements with 0 rest length and 0 stiffness (the force does not 

change with the variation of cable lengths). Then the internal forces in the cables remain at the initially 

given values regardless of the final structural equilibrium state, and thus the cable forces in the form-

finding can be controlled. The potential energy of the ideal element is the product of the given cable 

force and the final element length. When using the nodal coordinates as unknown parameters of the 

form-finding, the potential energy of ideal cables that connect nodes i and j can be written as 

𝜋𝑖𝑗
𝑐 (𝐱) = 𝑇𝑖𝑗‖𝐱𝑖 − 𝐱𝑗‖

2
 (1) 

where 𝐱 is the vector unknown parameters (i.e., nodal coordinates). 𝑇𝑖𝑗 is the given cable forces in the 

form-finding. 𝐱𝑖 and 𝐱𝑗  are vectors of nodes i and j, respectively. ‖∗‖2 represents the 2-order norm of 

∗. 

The strut and non-sliding cables are assumed as normal linear elastic elements with a relatively large 

stiffness. So that the final lengths of those elements can be very similar to the given rest length to achieve 

better control of the structural shape. Similarly, the potential energy of the element connecting nodes 

nodes i and j can be written as 
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𝜋𝑖𝑗
𝑠 (𝐱) =

1

2
𝑘𝑖𝑗(‖𝐱𝑖 − 𝐱𝑗‖

2
− 𝑙𝑖𝑗

0 )2 (2) 

where 𝑘𝑖𝑗 and 𝑙𝑖𝑗
0  are the axial stiffness and rest length of the element, respectively.  

To ensure the structure satisfies the given conditions under external loads, the potential loads should 

also be considered(e.g. self-weight load). If the external load is acting on the kth degree of freedom 

(DOF), the potential energy can be written as 

𝜋𝑘
𝑙 (𝐱) = −𝑓𝑘𝑥𝑘 (3) 

where 𝑓𝑘 is the magnitude of the external load, 𝑥𝑘 is the nodal coordinate corresponding to the kth DOF. 

Note that, in the form-finding process, the final lengths of the cables are unknown, so the self-weight of 

the structure cannot be pre-determined. In this paper, the self-weight load is determined by an iteration 

process. Firstly, the equilibrium state of the structure without self-weight load is determined; then, the 

corresponding self-weight of the equilibrium state is used in the next iteration; following this scheme, 

the self-weight is iteratively updated until its change becomes negligible.  

Considering the total potential energy of the structure, the following indexes are defined: 

𝛿𝑖𝑗
1 = {

 1, if node i and j are connected by a cable

 0, if node i and j are not connected by a cable
 

𝛿𝑖𝑗
2 = {

 1, if node i and j are connected by a strut

 0, if node i and j are not connected by a strut
 

𝛿𝑘 = {
 1, there is external load on the k-th DOF 
 0, there is no external load on the k-th DOF 

 

(4) 

Then, the total potential enegry of the cable-strut structures can be written as  

Π(𝐱) = ∑ ∑ 𝛿𝑖𝑗
𝑐 𝜋𝑖𝑗

𝑐 (𝐱)

𝑛

𝑗=𝑖+1

𝑛

𝑖=1

+ ∑ ∑
1

2
𝛿𝑖𝑗

𝑠 𝜋𝑖𝑗
𝑠 (𝐱)

𝑛

𝑗=𝑖+1

𝑛

𝑖=1

+ ∑ 𝛿𝑘
𝑙 𝜋𝑘

𝑙 (𝐱)

3𝑛

𝑘=1

 (5) 

Substituting Eqs. (1)-(4) to Eq. (5), the total potential energy in terms of nodal coodinates is obtained 

and it can be written as 

Π(𝐱) = ∑ ∑ 𝛿𝑖𝑗
𝑐 𝑇𝑖𝑗‖𝐱𝑖 − 𝐱𝑗‖

2

𝑛

𝑗=𝑖+1

𝑛

𝑖=1

+ ∑ ∑
1

2
𝛿𝑖𝑗

𝑠 𝑘𝑖𝑗(‖𝐱𝑖 − 𝐱𝑗‖
2

− 𝑙𝑖𝑗
0 )2

𝑛

𝑗=𝑖+1

𝑛

𝑖=1

− ∑ 𝛿𝑘
𝑙 𝑓𝑘𝑥𝑘

3𝑛

𝑘=1

 (6) 

2.3 Form-finding based on Levenberg-Marquardt algorithm 

According to the principle of potential stationary energy, the node coordinates corresponding to the 

equilibrium state of the structure are the stationary values of the potential energy function, and the 

corresponding first-order derivative vector of the overall potential energy function is 0, which can be 

written as: 

𝜕Π2(𝐱)

𝜕𝐱
= 𝟎 (7) 

The most commonly used Newton iteration-based method needs the inverse of the stiffness matrix (i.e., 

the Hessian matrix of the total potential energy), which cannot be used when the Hessian matrix is 

singular or near singular. To avoid solving the inverse of the stiffness matrix, some vector-based 

methods, such as the dynamic relaxation method (DRM) and the vector form intrinsic finite element 

method (VFIFE), are developed [17, 27]. The main idea of the methods is that the nodes move along the 

direction of unbalanced forces until reaching the balanced position. The methods are essential to finding 

the local minimum of the potential energy, and the applicability of these methods is based on the fact 

that a stable equilibrium state is a local minimum of the potential energy. However, in the form-finding 

process, virtual constitutive relations are used for the cables, hence the potential energy is different from 
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that of the real structure, and the stable equilibrium state may not be a local minimum of the virtual 

potential energy [28]. Miki and Kawaguchi have shown that the form-finding based on minimizing the 

potential energy may not converge when all the cable forces are given as the initial conditions [29].  

The Levenberg-Marquardt (LM) algorithm, which converts the solving of non-linear equations to 

a least-squared problem, is an efficient method to solve non-linear equations with global convergence 

[30]. By adaptive modification of the Hessian matrix, non-linear equations can be solved even though 

the Hessian matrix is singular or the solution is not a local minimum of the potential energy. It has been 

proved to be valid for the form-finding of tensegrity systems without sliding cables [31].  

Considering a general nonlinear equation 𝑓(𝐱) = 𝟎, then the objective of the LM is as follows 

𝐱 =  arg. min ‖𝑓(𝐱)‖2 (8) 

where 𝑓(𝐱) is the residual error in terms of 𝐱.  

Let 𝐉𝑚 and 𝐑𝑚 denote respectively the hessian matrix and the residual errors in the mth iteration; 

λ𝑚 denotes a parameter to modify the Hessian matrix. The main steps of the LM are as follows (more 

details of the LM can be referred to in [30]).  

(1) Input the initial guess of the solution 𝐱0, the computational parameters λ0 > 0 and α > 1; and 

set 𝑚 =  0. 

(2) Compute the Hessian matrix 𝐉𝑚 and the initial residual errors 𝐑𝑚; solve the variations of 𝐱 in 

the mth iteration (Eq. (11)).  

𝑑𝐱𝑚+1 = (𝐉𝑚
T 𝐉𝑚 + λ𝑚𝐈)−1𝐑𝑚 (9) 

(3) Update 𝐱 as follows 

𝐱𝑚+1 = 𝐱𝑚 + 𝑑𝐱𝑚 (10) 

(4) Check the convergence criterion ‖𝑓(𝐱𝑚+1)‖2 < 𝜀. If the criterion is satisfied, terminate the 

iteration, and 𝐱𝑚+1 is the final solution; otherwise, go to step (5). 

(5) Judge the condition ‖𝑓(𝐱𝑚+1)‖2 < ‖𝑓(𝐱𝑚)‖2, if it is satisfied, set λ𝑚+1 = λ𝑚/α, and go to 

step (6); otherwise, set λ𝑚+1 = λ𝑚α, and go to step (2). 

(6) Set 𝑚 =  𝑚 +  1, and go to step (2). 

For illustration, the computational framework of the form-finding method is shown in Fig. 1. 

Input initial conditions

Set self-weight to G0 = 0；
Set k = 0.

Get total potential energy, 

obtain equilibrium equations 

and solve it by LM

Set k = k +1;

Update self-weight loads Gk.

Get initial equilibrium state.

‖G𝑘 − G𝑘−1‖ < 𝜀? 

Yes

No

 

Fig. 1 Computation freamworks 
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3 Numerical examples 

Example 1: Prism tensegrity structure 

The topology, the node numbering, and the element numbering of the prism tensegrity structure are 

given in Fig. 2. There are 9 cables and 3 struts in the structure. There are no constraints and no external 

loads on the nodes. The cable forces and strut lengths for the form-finding are given in Table. 1. The 

structural equilibrium state under the condition is solved based on the proposed method, and the final 

nodal positions are listed in  Table 2. Under the special cable force distribution in Table 1, all the cable 

forces are the same, and two different configurations of prism tensegrity structures with sliding cables 

can be obtained. As shown in Fig. 3, in the first one (Fig. 3(a)), the three cables on the bottom side are 

connected as an integral sliding cable; in the second one (Fig. 3(b)), the four cables in the lateral side 

are connected as a sliding cable.  

N4

N6N5

N1

N2

N3

C6C4

C5

C9
C8

C7

C2

C3

C1

S3

S1
S2

 

Fig. 2 Prism tensegrity structure considered in example 1 

Table 1.  Given condition of cable forces and strut lengths of prism tensegrity 

Element No. 
Force of cables (kN) Length of struts(m) 

C1 C2 C3 C4 C5 C6 C7 C8 C9 S1 S2 S3 

Given parameters 1 1 1 1 1 1 1 1 1 4 4 4 

 

Table 2. Nodal coordinates of equribrium state of prism tensegrity (m) 

Node No. Nodal coordinates 

N1 (1.228, −0.399, 0.556) 

N2 (−1.142, −1.034, 0.593) 

N3 (0.593, −2.770, 0.566) 

N4 (1.576, −1.034, −0.662) 

N5 (−0.794, −0.399, −0.625) 

N6 (−0.159, −2.77, −0.635) 
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(a) sliding bottom cable (b) sliding lateral cable 

Fig. 3 Prism tensegrity structure with sliding cables 

 

Example 2: Geiger-type cable dome 

A Geiger cable dome as shown in Fig. 4 is considered in this example. The span of the structure is 20 

m. There are 40 cables and 9 struts in the structure. Considering the symmetry of the system, the cables 

and struts are divided into 5 groups (C1-C5) and 2 groups (S1, S2), respectively. The 8 nodes of the 

outer ring are fixed. No external loads are considered. The cable forces and strut lengths are given in 

Table 3.  Some nodal coordinates in the equilibrium state are shown in Table 4, the positions of other 

nodes can be obtained based on the structural symmetry. Similarly, two different configurations of 

Geiger-type cable dome with sliding cables can be obtained based on the special cable force distribution 

in Table 4. As shown in Fig. 4, the first one (Fig. 5(a)) uses a sliding hoop cable, and the second one 

(Fig. 5(b)) uses sliding ridge cables that overlap at the second layer of the ridge line.  

N3
N1

N2 N4

x
y

z

 

(a) perspective view: structural configuration and partial node numbering 

C1

C2

C3

C4

C5

S2

S1

20 m

 

(b) side view: element grouping 

Fig. 4 Geiger-type cable dome 

Table 3.  Given condition of cable forces and strut lengths of cable dome 

 Force of cables (kN) Length of struts(m) 

Group No. C1 C2 C3 C4 C5 S1 S2 

Given conditions 1 1 2 1 1 4 4 
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Table 4. Nodal coordinates of equilibrium state of cable dome (m) 

Node No. Nodal coordinates 

N1 (0, 0, 3.137) 

N2 (0, 0, −0.853) 

N3 (6.54, 0, 1.142) 

N4 (6.452, 0, −2.854) 

 

 
 

(a) sliding hoop cable (b) sliding ridge cables 

Fig. 5 Geiger-type cable dome with sliding cables 

Example 3: Orthogonal cable truss 

As shown in Fig. 6, a simple orthogonal cable truss with 2×2 planar cable trusses is considered. The 

span of the structure is 10 m. There are 24 cables and 4 struts in the structure. Considering the symmetry 

of the system, the cables and struts are divided into 2 groups (C1-C2) and 1 group (S1), respectively. 

The 8 nodes of the outer ring are fixed. No external loads are considered. Some nodal coordinates in the 

equilibrium state are shown in Table 6. Two configurations of the cable truss with sliding cables can be 

obtained based on the special cable force distribution in Table 5. As shown in Fig. 7, the first one (Fig. 

7(a)) uses a sliding hoop cable, and the second one (Fig. 8(b)) uses sliding string cables.  

x
y

z

N1

N2

 

(a) perspective view: structural configuration and partial node numbering 

C1
C2

S1

 

(b) side view: element grouping 

Fig. 6  Orthogonal cable truss 

Table 5 Given condition of cable forces and strut lengths of cable truss 

Group No. 
Force of cables (kN) Length of struts(m) 

C1 C2 S1 

1 1 1 4 
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Table 6. Nodal coordinates of equilibrium state of cable truss (m) 

Node No. Nodal coordinates 

N1 (5.551, 5.551, 1.998) 

N2 (5.551, 5.551, −1.998) 

 

  
(a) sliding hoop cable (b) sliding string cables 

Fig. 7 Orthogonal cable truss with sliding cables 

4 Physical model 

As is shown in Fig. 8, to further demonstrate the feasibility of the form-finding method, a simple physical 

model of a Geiger-type cable dome with sliding ridge cables (Fig.5(b)) is built. The model is composed 

of eight planer trusses and two layers of loop cables. The span of the physical model is 1.2 m, the cables 

are made of Nylon threads, and the struts are made of aluminum alloy. The cables are tensioned by 

adjusting the screws in the supported nodes.  

(b)

(c)

(a)

(d)

(e)

 

(a) Cable made of Nylon thread (b) Strut made of aluminum alloy (c) Tensioning screws (d) Overlap 

of cables (e) Steel supported system 

Fig. 8 Physical model of Geiger-type cable dome with sliding ridge cables. 
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5 Conclusions 

The distribution of cable force in a cable-strut structure with sliding cables needs to satisfy certain 

constraints. This paper proposes a form-finding method by assigning special cable forces of specific 

cables to make it satisfy the condition of using sliding cables. The potential energy function of the 

structure under the given conditions of cable forces and strut lengths is derived, and the form-finding is 

transformed into solving the stationary value of the energy function. The Levenberg-Marquardt is used 

to solve the stationary value. The feasibility of the method is demonstrated by numerical examples. 

Various configurations of cable-strut structures with sliding cables are obtained based on the assigning 

special cable force distributions of a prism tensegrity, a Geiger-type cable dome, and an Orthogonal 

cable truss. A physical model is built to further demonstrate the feasibility of obtained structural 

configurations. After replacing adjacent cables with the same force with sliding cables, the resultant 

force at each node remains unchanged and the cables do not slide, and thus the structure remains in 

equilibrium. 

Note that only the equilibrium condition are considered the proposed method. The replacement of sliding 

cables changes the constraint conditions of the structure, and thus the geometrical stability of the 

structure may be influenced and requires further judgment based on the positive definiteness of the 

tangent stiffness matrix.  
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