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Abstract 

Reinforced concrete is the most widely used material for plates and shells. While one might thus assume 

that their dimensioning is a long-solved problem, many questions remain open. The design of shells 

often aims at minimising bending moments using appropriate geometries. However, pure membrane 

action cannot be achieved under varying loads, as concrete shells are too stiff to adapt their form. On 

the other hand, while bending governs the behaviour of floor slabs, compressive or tensile membrane 

forces inevitably develop due to cracking or large deflections, respectively. Moreover, the principal 

directions of internal actions vary depending on the loading. Concrete plates and shells are thus typically 

subjected to eight independent stress resultants. If ductile behaviour is ensured, a simple sandwich model 

approach based on plasticity theory is sufficient to design the reinforcement and check for structural 

safety. However, this requires redistribution of internal forces and thus cannot be used to verify e.g. the 

fatigue resistance or serviceability where the actual load-deformation behaviour must be considered. No 

simplified design methods enable such analyses, not even for linear elastic behaviour. On the other hand, 

nonlinear layered shell element models, developed for this purpose decades ago, are established but 

computationally intensive and are considered an expert tool. Covering the related uncertainties by 

overdesigning new – or potentially unnecessarily strengthening existing – structures is no longer viable 

in light of the need to reduce the carbon footprint of construction. Instead, the mechanical behaviour 

must be known and understood precisely. The paper therefore outlines a case study comparing analytical 

and numerical approaches for the fundamental case of pure twisting moments, either neglecting or 

accounting for membrane action, including a new theoretical solution for the latter case. Finally, the 

study formulates a baseline of knowledge gaps about the behaviour of concrete plates and shells and 

how these should be tackled in future research. 

Keywords: concrete plates and shells, reinforcement design, sandwich model, layered shell element, experimental testing 

1. Introduction 

Reinforced concrete (RC) is the most widely used construction material for plates and shells. These 

elements are the fundamental components of larger structures such as bridges, floor slabs or other 

infrastructure. Thus, when analysing the structural safety or serviceability of RC structures, it is 

inherently crucial to understand their mechanical behaviour on a shell or plate element level. Particularly 

in light of the high carbon footprint of the construction industry, the material behaviour must be known 

and understood more precisely than ever to build structurally efficient and material-saving structures. 

Plates, as well as shells, are typically loaded perpendicularly to their mid-plane, but differ by their 

geometry and load-bearing behaviour. Plates (often referred to as slabs) are a type of plane structure 

carrying loads perpendicular to their mid-plane and predominantly subjected to bending and twisting 

moments (𝑚𝑥, 𝑚𝑦, 𝑚𝑥𝑦) and transverse shear forces (𝑣𝑥, 𝑣𝑦) [1]. Shells, on the other hand, may be 

curved and are thus – even if only loaded perpendicularly to their mid-plane – additionally subjected to 

membrane forces (𝑛𝑥 , 𝑛𝑦, 𝑛𝑥𝑦), leading to a more complex mechanical behaviour with eight stress 
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resultants (bending moments 𝑚𝑥 , 𝑚𝑦, 𝑚𝑥𝑦, transverse shear forces 𝑣𝑥, 𝑣𝑦 and membrane normal and 

shear forces 𝑛𝑥 , 𝑛𝑦, 𝑛𝑥𝑦). On the other hand, membrane forces also develop in non-curved RC plates, 

e.g. due to cracking or combined load-carrying functions, such as in bridge decks transferring traffic 

loads locally (bending action) while at the same time serving as flange of a girder (membrane action). 

Hence, elements of plates are generally subjected to the same eight stress resultants as shell elements, 

and the mechanical behaviour on the element level can be analysed with the same models; they are thus 

referred to as shell elements in the following. Note that this study focuses on compressive membrane 

action (CMA) in RC plates, neglecting tensile membrane forces as well as geometrical nonlinearities.  

Similar to a RC beam in bending, the response of RC plates and shells can generally be idealised by 

distinct stages (Figure 1). Stage I is described by a linear elastic material behaviour and an uncracked 

cross-section, Stage II corresponds to linear elastic material behaviour considering a cracked cross-

section, and Stage III represents the ultimate strength. Upon cracking of an element, the neutral axis 

shifts towards the compressed face, causing an extension of the element in its mid-plane. As this 

extension is generally restrained by surrounding elements, it generates CMA.  

 
Figure 1: Schematic diagram showing the load-deformation behaviour of RC analytically and numerically 

(1): Total load-deformation path; (2): ULS, elastic – plastic (EP), (3): SLS or FLS, elastic – elastic (EE) 

Analysing the structural response of plates and shells using these three stages (Figure 1: Scenario 1, 

orange) is intricate, particularly due to the discontinuities, and neglects effects such as tension stiffening 

or compression softening of the concrete. Instead, nonlinear finite element analyses (NLFEA) are thus 

often carried out to achieve sufficiently accurate results [2,3] capturing all relevant influences. Such 

realistic analyses are particularly important for the accurate quantification of CMA, where a precise 

description of the deformation state [4] is paramount. Analytical solutions for the load-deformation 

relationship only exist for special cases (e.g. pure twisting moments [5] or anticlastic bending [6]). 

In the ultimate limit state (ULS), RC plates and shells can readily be designed based on the theory of 

plasticity (Figure 1: Stage III). According to the lower bound theorem of plasticity theory, structural 

safety is ensured by providing sufficient resistance against any statically admissible stress state, see 

e.g [1]. Using linear elastic FEA, an admissible stress state of any shell and plate can easily be 

determined (Figure 1: Scenario 2, purple), and the resistances may be determined using well-established 

yield conditions. The normal moment yield condition [7], also known as Wood-Armer moments, is 

typically applied for slabs with vanishing membrane forces. Similarly, the sandwich model [9] can be 

used for shell structures. Because the deformations calculated using linear elastic FEA (Stage I) are 

smaller than the effective deformations, CMA (if membrane forces are part of the analysis at all) and 

the ultimate load are underestimated [10]. As the internal actions are determined elastically, but the yield 

conditions used are based on plasticity theory, the approach outlined above for the ULS design of shells 

and plates is referred to as elastic-plastic analysis (EP) in the following. 

When designing RC shells and plates in the serviceability limit state (SLS) or fatigue limit state (FLS), 

the focus lies on calculating crack widths or steel stresses, respectively. These values need to be 

determined considering cracked-elastic cross-sections in Stage II (Figure 1: Scenario 3, blue). In the 
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following, this approach is termed elastic-elastic analysis (EE). Such analyses are currently only possible 

in general cases with NLFEA; mechanically consistent analytical models to determine the steel stresses 

or crack widths in RC plates or shells for SLS or FLS have not been published to the authors' knowledge, 

except for the mentioned special cases [5,6].  

As the SLS and FLS for shells and plates are becoming increasingly important in designing new or 

examining existing RC structures, simpler and effective methods for the reliable and efficient design 

and assessment in the SLS and FLS are thus desirable. As a first step to this end, this study highlights 

open questions and gaps in the state of the art in a case study of a shell predominantly loaded by twisting 

moments. A restraint factor is introduced to account for CMA in a mechanically consistent manner. 

Finally, ways in which the identified open questions about the mechanical behaviour of concrete shells 

and plates might be tackled are presented to allow for more efficient RC shell designs in the future. 

2. Case Study 

To illustrate the research gaps, analyses of the full load-deformation behaviour, as well as the two design 

scenarios (EP, EE), are conducted. As a case study, a shell element of a RC bridge deck subjected to 

predominant twisting moments (Figure 2) is chosen, and the results are compared to the results of a test 

series carried out by Marti, Leesti and Khalifa [11], who subjected square RC plates with dimensions of 

1.701.700.20 m3 to pure twisting moments by corner forces. Note that as common in RC analysis and 

design, normal and twisting moments are referred to the orthogonal reinforcement directions x and y. 

 
Figure 2: Shell element in the context of a bridge deck: a) in-plane restraint, b) stress state, c) displacements 

The experiment evaluated is the – with the exception of the reinforcement layer offsets – isotropically 

reinforced Specimen ML9. The corresponding material parameters are listed in Table 1. The same 

calculations are also carried out for Specimen ML8 (orthotropically reinforced), see Appendix A. 

Table 1: Material and geometrical parameters for the test specimen ML9 analysed in this case study [11] 

Material Parameters ML9  Geometrical Parameters ML9 

Young's modulus steel 𝐸𝑠  205 GPa  Plate thickness ℎ  200 mm 
Yield strength steel 𝑓𝑠𝑦  412 MPa  Plate side widths 𝑠  1700 mm 

Ultimate strength steel 𝑓𝑠𝑢  600(1) MPa  Static depth 𝑑𝑥  166 mm 

Ultimate strain steel ε𝑠𝑢  100(1) ‰   𝑑𝑦 182 mm 

Young's modulus concrete 𝐸𝑐  35.4 GPa  Reinforcement  ρ𝑥  1.00 % 

Compressive strength concrete 𝑓𝑐𝑐  44.4 MPa  ratios (𝑎𝑠/ℎ) ρ𝑦  1.00 % 
(1) assumptions based on the reinforcing steel designation in [11]  
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2.1 Load-deformation behaviour 

To determine the load-deformation behaviour, a NLFE analysis was carried out using the cracked 

membrane material model [4] designed explicitly for RC loaded in plane stress, which was implemented 

as a user material in Ansys Mechanical APDL (CMM-Usermat) [12] to allow for analyses of RC shell 

structures with the layered Shell181 element of Ansys [12]. A bilinear approximation of the bare steel 

stress-strain relationship and a concrete stress-strain relationship according to Sargin [13] are applied. 

For more details on the modelling assumptions, such as the underlying bond-slip relationship or tension 

stiffening and test recalculations, the reader is referred to [2,3]. 

Figure 3a) shows the finite element model and the applied boundary conditions. After applying the dead 

load, the shell is loaded by imposed deformations δ𝑄 until the ultimate twisting moment of  

𝑚𝑥𝑦 ≈ 85 𝑘𝑁𝑚/𝑚 is reached. To account for possible CMA (not present in the experiments), Link180 

elements [14] with finite element stiffness 𝑘𝑓,𝑥 = 𝑘𝑓,𝑦 = 𝑘𝑓 are introduced as shown in Figure 3b). 

Varying the stiffness 𝑘𝑓 allows investigating the influence of CMA (𝑛𝑥 ≠ 0, 𝑛𝑦 ≠ 0 and 𝑛𝑥𝑦 =0) on the 

laod-deformation behaviour of the shell. 

 

Figure 3: Numerical modelling of the shell element in Ansys: a) FE model, b) Link180 elements in FE model 

2.2 Ultimate limit state (EP) 

In ULS design, the lower bound theorem of plasticity theory can be applied. Accordingly, a lower limit 

value of the ultimate load is obtained if a statically admissible stress state is found that does not infringe 

the yield condition. For vanishing membrane forces (𝑛𝑥 ≈ 0, 𝑛𝑦 ≈ 0, 𝑛𝑥𝑦 ≈ 0) as in the experiment, 

the normal moment yield condition [7] can be used, i.e., for pure twisting (𝑚𝑥 = 𝑚𝑦 = 0): 

𝑚𝑥𝑢 ≥ 𝑚𝑥 + 𝑘|𝑚𝑥𝑦| = 𝑘|𝑚𝑥𝑦| (1) 

𝑚𝑦𝑢 ≥ 𝑚𝑦 +
1

𝑘
|𝑚𝑥𝑦| =

1

𝑘
|𝑚𝑥𝑦| (2) 

where 𝑚𝑥𝑢 and 𝑚𝑦𝑢 are the required ultimate moments in x- and y-direction, 𝑚𝑥 , 𝑚𝑦 and 𝑚𝑥𝑦 the acting 

moments and 𝑘 a freely selectable parameter, reasonably set to k = 1 for isotropically reinforced 

specimen ML9. For significant membrane forces (𝑛𝑥 ≠ 0, 𝑛𝑦 ≠ 0, 𝑛𝑥𝑦 ≈ 0, tension positive), the 

sandwich model [9] is used as a yield condition to determine the ultimate twisting moment: 

 |𝑚𝑥𝑦| ≤ 𝑚𝑥𝑢 − 𝑧 ∙
𝑛𝑥

2
,    but    |𝑚𝑥𝑦| ≤ 𝑘𝑐𝑓𝑐𝑐

ℎ2

8
 (3) 

 |𝑚𝑥𝑦| ≤ 𝑚𝑦𝑢 − 𝑧 ∙
𝑛𝑦

2
,    but    |𝑚𝑥𝑦| ≤ 𝑘𝑐𝑓𝑐𝑐

ℎ2

8
 (4) 

where z denotes the inner lever arm, and 𝑘𝑐 represents the effectiveness factor, reducing the concrete 

compressive strength for plastic analysis. The upper bound of the torsional resistance (right terms in 

equations (3) and (4), respectively), was introduced by Nielsen [7] and represents a concrete crushing 

failure mode instead of the desired ductile failure mode due to the yielding of all reinforcements.  

The normal moment yield condition (1, 2) and the sandwich model (3, 4) lead to approximately the same 

solution for vanishing membrane and shear forcses and an isotropically reinforced RC shell element. 

Both yield conditions assume a rigid plastic stress-strain relationship for the reinforcing steel and an 
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arbitrary stress-strain relationship for the concrete. Furthermore, the ductility conditions, e.g. 

reinforcement yielding, must be fulfilled. In this study, the inner lever arm of forces 𝑧𝑁𝑀𝑌𝐶 and 𝑧𝑆𝑀 for 

the normal moment yield condition and sandwich model, respectively, as well as the ultimate moments 

𝑚𝑥𝑢 and 𝑚𝑦𝑢 are determined neglecting the compressive reinforcement, i.e.: 

𝑧𝑁𝑀𝑌𝐶 = 𝑑 −
𝑎𝑠 ∙ 𝑓𝑠

2 ∙ 𝑓𝑐𝑐
 (5) 

𝑧𝑆𝑀 = ℎ/2  (6) 

𝑚𝑥𝑢 = 𝑎𝑠𝑥 ∙ 𝑓𝑠𝑥 ∙ 𝑧 and 𝑚𝑦𝑢 = 𝑎𝑠𝑦 ∙ 𝑓𝑠𝑦 ∙ 𝑧 (7) 

where 𝑑 refers to the static depth of the bottom reinforcement and 𝑎𝑠 is the reinforcement area. The lever 

arm of the sandwich model is defined as ℎ/2 here due to the state of pure twisting moment. 

2.3 Serviceability Limit State Fatigue (EE) 

As outlined in the introduction, no analytical solution exists for the calculation of stresses in the 

reinforcement for an EE analysis under general loading. Therefore, although it is not applicable for this 

case, the normal moment yield condition (1, 2) is often used in practice, to determine the reinforcement 

stresses from the resulting bending moments 𝑚𝐸𝑥 = 𝑚𝑥 + 𝑘|𝑚𝑥𝑦| and 𝑚𝐸𝑦 = 𝑚𝑦 + 1 𝑘⁄ |𝑚𝑥𝑦| by 

modelling the shell as two one-dimensional beams in x- and y-direction each. Assuming a cracked cross-

section (Stage II) and linear elastic behaviour, the following equations hold: 

σ𝑠 =
𝑚𝐸

𝑏𝑑

1

ρ (1 −
ξ
3) + ρ′ (

ξ
3 −

𝑑′

𝑑
) (

ξ − 𝑑′/𝑑
1 − ξ

)
 

(8) 

𝑥

𝑑
= ξ = √[𝑛ρ + ρ′(𝑛 − 1)]2 + 2 [𝑛ρ +

𝑑′

𝑑
ρ′(𝑛 − 1)] − [𝑛ρ + ρ′(𝑛 − 1)] (9) 

where 𝑥 is the compression zone depth, 𝑏 the width of the cross-section, σ𝑠 the stress in the 

reinforcement, 𝑛 = 𝐸𝑠/𝐸𝑐 the modular ratio (where 𝐸𝑠, 𝐸𝑐  are the Young’s moduli of reinforcement and 

concrete), and 𝜌 = 𝑎𝑠 𝑑⁄  and ρ′ =  𝑎𝑠
′ 𝑑⁄  denote the reinforcement ratios of the top and bottom 

reinforcement, respectively. 

Marti and Kong [5] published a mechanically consistent analytical solution to determine the steel 

stresses in the cracked elastic Stage II for vanishing membrane forces and the special load condition of 

pure twisting moments and symmetrical (top and bottom identical) iso- or orthotropic reinforcement. In 

this study, their solution is amended by introducing a restraint factor 𝜅 allowing to analytically 

incorporate membrane forces (𝑛𝑥 ≠ 0, 𝑛𝑦 ≠ 0, 𝑛𝑥𝑦 ≈ 0): 

κ𝑥 =  −
𝑛𝑥

ε0𝑥𝐸𝑐ℎ
; κ𝑦 =  −

𝑛𝑦

ε0𝑦𝐸𝑐ℎ
  (10) 

where 𝜀0𝑥 and 𝜀0𝑦 denote the mean strain in the mid-plane of the shell element in the x and y direction, 

respectively. A value of κ = 0 corresponds to an unrestrained shell without CMA. On the other hand, 

κ = 1 accounts for a fully restrained system, i.e. 𝑛𝑥 = ε0𝑥𝐸𝑐ℎ and 𝑛𝑦 = ε0𝑦𝐸𝑐ℎ.  

Figure 4 illustrates the behaviour for an isotropically reinforced element, hence κ𝑥 = κ𝑦 = κ. By 

considering equilibrium, a factor ακ (depth of neutral axes in principal directions) can be determined 

analogously to the definition of α𝑀𝐾 by Marti und Kong [5], but extended for normal membrane forces. 

Consequently, the torsional stiffness of the shell 𝐷𝑥𝑦(κ) and reinforcement stresses σ𝑠(κ) as well as the 

mean concrete compressive stresses σ𝑐(κ), are obtained as functions of the restraint factor κ : 

−𝐹𝑐 + 2 ∙ 𝐹𝑠 = −𝑛𝑥 

−
𝐸𝑐

2
∙ χ𝑥𝑦ℎ2 (

1

2
− 𝛼)

2

+ 2 ∙ χ𝑥𝑦αℎ𝑎𝑠𝑛𝐸𝑐 = −κχ𝑥𝑦αℎ𝐸𝑐ℎ  

(11) 

simplifies to: 
α2

2
+

1

8
−

α

2
− 2𝑛ρα − κα = 0 

 



Proceedings of the IASS Symposium 2024 

Redefining the Art of Structural Design 
 

 

 6 

 

α𝑀𝐾 =
1

2
+ 2𝑛ρ − √2𝑛ρ(1 + 2𝑛ρ) (12) 

α𝜅 =
1

2
+ (2𝑛ρ + κ) − √(2𝑛ρ + κ)(2𝑛ρ + κ + 1) (13) 

𝐷𝑥𝑦(κ) =
𝑚𝑥𝑦

𝜒𝑥𝑦
=

𝐸𝑐ℎ3

24
(4ακ

3 − 3ακ + 1) (14) 

σ𝑠(κ) = 𝐸𝑠ακℎ ∙
𝑚𝑥𝑦

𝐷𝑥𝑦
 (15) 

σ𝑐(κ) = σ𝑠(κ) ∙
κ

𝑛
 (16) 

The torsional stiffness 𝐷𝑥𝑦 (14), the steel stresses σ𝑠 (15), and the mean concrete compressive stress 

σ𝑐 (16) are readily obtained as functions of the restraint factor κ for any given valid twisting moment. 

Note that the mean concrete compressive stresses σ𝑐(κ), corresponding to an uncracked homogeneous 

cross-section subjected to the resulting strain in the mid-plane, are a measure of the activated CMA. 

 
Figure 4: Cross-sections of shell element  subjected to pure twisting moment with strains (orange), stresses 

(green) and forces (blue): a) reinforcement direction x, b) reinforcement direction y, c) principal direction 1,  

d) principal direction 2 

3. Results and Discussion 

This section compares and discusses the results of the load-deformation analysis and the two design 

scenarios (EP, EE). The results of the anisotropically reinforced Specimen ML8 are compiled in 

Appendix B.2 (Table 5, Table 6, Figure 8 and Figure 9). In general, the results extracted from the NLFE 

analysis (generalised stresses 𝑚𝑥𝑦, 𝑛𝑥 and 𝑛𝑦 and generalised strains ε0𝑥, ε0𝑦 and χ𝑥𝑦) are mean values 

along the the axis of symmetry of the shell, where the twisting moment 𝑚𝑥𝑦 is approximately constant 

(see Appendix B.1, Figure 7). The steel stresses at the crack σ𝑠𝑟𝑥 and σ𝑠𝑟𝑦 are also mean values along 

the axes of symmetry, determined as average stresses in the top and bottom reinforcement in the 

corresponding directions and accounting for the influence of the bending moments due to dead load. 

The remaining quantities (mean concrete compression stress σ𝑐  and torsional moment stiffness 𝐷𝑥𝑦) are 

derived from these mean values. 

3.1 Load-deformation behaviour 

Figure 5a) compares the observed load-deformation behaviour of Specimen ML9 to the NLFEA 

solutions for different stiffnesses 𝑘𝑓. Triangles in Figure 5a) represent the ultimate twisting moments 

𝑚𝑥𝑦𝑢 based on the normal moment yield condition and the sandwich model according to Section 3.2. 

Additionally, the onset of yielding in the first reinforcement layer is marked with an “x”. The numerical 

simulation for 𝑘𝑓 = 0 fits well to the experimental results, confirming that the numerical model reliably 
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predicts the load-deformation behaviour. As expected, the shell stiffness in Stage II and the ultimate 

load both increase with the stiffness 𝑘𝑓. The reported failure mode of test specimen ML9 was concrete 

softening or crushing due to increasing transverse strains ε1 ≥ 0 [5]. The predicted failure mode 

correlates with this observation, which corresponds to the softening behaviour of the load-deformation 

curve after the maximum twisting moment. With increasing stiffness 𝑘𝑓, this failure mode becomes more 

pronounced as the mean concrete compressive stresses σ𝑐 (hence CMA) also increase significantly 

(Figure 5b)). After stabilised cracking at 𝑚𝑥𝑦 ≈  30 kNm/m, the restraint factor κ decreases with 

increasing twisting moment 𝑚𝑥𝑦 and decreasing torsional stiffness 𝐷𝑥𝑦, as illustrated by Figure 5c) and 

Figure 5d) respectively. The decreasing torsional stiffness 𝐷𝑥𝑦 in Stage II is caused by the progressive 

reduction of the compression zone depths (which are not constant as in the analytical model). After 

yielding of the reinforcement (Stage III), the torsional stiffness decreases even more pronouncedly, see 

Figure 5d). 

  
Figure 5: NLFEA results ML9: a) load-deformation behaviour, b) mean compressive stress σ𝑐𝑥,  

c) restraint factor κx, and d) stiffness 𝐷𝑥𝑦 (corresponding to 𝑘𝑓,1..4 = [0, 13, 120, 1′100] kN/m; 𝑛1..4 

see Table 2). Note: Here, 𝐷𝑥𝑦 is the secant stiffness, determined from corner deflections 𝑤 assuming 

homogeneous 𝑚𝑥𝑦 and χ𝑥𝑦: 𝐷𝑥𝑦 = 𝑚𝑥𝑦/χ𝑥𝑦 = 𝑚𝑥𝑦𝑙2/(4𝑤) 
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Appendix B.1 (Figure 7) provides more in-depth information about the distribution of 𝑚𝑥𝑦 and the 

remaining stress resultants, including the mean transverse shear force 𝑣0, enabling a comprehensive 

understanding of the force flow within the shell allowing for generalisation of previous findings. 

3.2 Ultimate Limit State (EP) 

The results of the EP analysis are listed in Table 2. For 𝑛𝑖 = 0 and κ = 0 the ultimate twisting moment 

is calculated with the normal moment yield condition. For 𝑘𝑓 ≠ 0, hence 𝑛𝑖 ≠ 0, the ultimate twisting 

moment is calculated with the sandwich model and the value of 𝑛𝑖 obtained from the NLFE analysis. 

Table 2: Ultimate twisting moments according to EP analysis methods 

Theory σ𝑐 [N/mm²] 𝑛𝑖 [kN/m] 𝑚𝑥𝑦𝑢 (𝑘 = 1) [kNm/m] 

Normal moment yield condition 0 0 85 

Sandwich model 0 0 82 

Sandwich model  -1.01 -202 92.5 

Sandwich model  -5.28 -1056 101(1)/121(2) 

Sandwich model -8.94 -1788 101(1)/121(2) 

0.46(1) ≤ 𝑘𝑐 ≤ 0.55(2)  
All results are based on the material parameters summarised in Table 1 and agree very well with the 

experimental ultimate load and the NLFE analysis (see also Figure 5). For higher mean concrete 

compressive stresses σ𝑐 =  σ𝑐𝑥 = σ𝑐𝑦 failure occurs due to concrete softening or crushing. To ensure a 

safe design, it is advised to choose 𝑘𝑐 carefully, as it directly affects the ultimate twisting moment 𝑚𝑥𝑦𝑢. 

The values in Table 2 (see footnote) are chosen according to the SIA 262 [15] for varying 𝑓𝑐𝑐. 

3.3 Serviceability and Fatigue Limit State (EE) 

For a SLS or FLS verification, stresses in the reinforcement in Stage II need to be calculated. This section 

presents the results for Specimen ML9 according to the normal moment yield condition (Table 3), the 

analytical evaluation and the NLFE analysis at an acting twisting moment of 𝑚𝑥𝑦 = 70 𝑘𝑁𝑚/𝑚 in 

Stage II. 

Table 3: Results of the stress calculation for tests ML9 according to the normal moment yield condition 

 
ML9, 𝑘 = 1.0 ML9, 𝑘 = 1.1 

Stresses in the bottom 

reinforcement 
σ𝑠,𝑥 

σ𝑠,𝑦 

159 

198 

MPa 

MPa 

170 

170 

MPa 

MPa 

Stresses in the top 

reinforcement 
σ𝑠,𝑥

′  

σ𝑠,𝑦
′  

58 

38 

MPa 

MPa 

62 

33 

MPa 

MPa 

Stresses in concrete σ𝑐 14 MPa 15 MPa 

 

While the normal moment yield condition is often used in practice, several underlying assumptions are 

mechanically inconsistent for its application in Stage II (see Section 2.3). To highlight these 

inconsistencies ands the effect of CMA, Figure 6 compares the results of (i) the analytical method 

including the restraint factor κ, evaluated for different reinforcement ratios ρ = 0.2 … 2%, (ii) the NLFE 

analysis of Specimen ML9 (ρ = 1%), and (iii) the normal moment yield condition (Table 3, 𝑘 = 1.1).  

Regarding the effect of CMA, both Figure 6a) and b) – and both the analytical model as well as the 

NLFE analysis – highlight that already at very small restraint (low values of restraint factor κ), the 

stresses in the reinforcement decrease significantly compared to the case of pure twisting without CMA: 

For example, a restraint factor of κ = 0.2 is sufficient at a reinforcement ratio of ρ = 0.2% to reduce 

the reinforcement stresses by more than 80%. For larger reinforcement ratios ρ, the beneficial effect of 

CMA is less pronounced, but still considerable. The reinforcement stresses obtained from the normal 

moment yield condition are unconservative at low restraint, but progressively become very conservative 

with increasing κ. CMA thus has a highly beneficial effect, which should be leveraged to design more 
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materially efficient RC structures and reduce strengthening or replacing existing RC structures due to 

structural deficiencies (which are often presumed based on analyses neglecting CMA).  

 
Figure 6: Results of (i) the analytical calculation including 𝜅 for different reinforcement ratios 𝜌 (continuous 

lines), (ii) the NLFE analysis for the reinforcement ratio 𝜌 = 1% as present in specimen ML9 (dashed lines), and 

(iii) the normal moment yield condition calculation (dotted lines) for: a) reinforcement stress, b) relative 

reinforcement stress (normalised with stress at 𝜅 = 0), c) mean concrete compressive stress, and d) stiffness 

 

The analytical method correlates well with the NLFE analysis, hence also the experimental investigation, 

with differences caused e.g. by the nonlinear material model used in the NLFEA, which also considers 

tension stiffening and the concrete tensile strength (𝑓𝑐𝑡 = 0.3𝑓𝑐𝑐
2/3

) until cracking of each layer [16], as 

well as further differences between the NLFE model and the analytical approach (see Section 3). While 

the differences are minor, it must be noted that the restraint factor κ is a priori unknown, i.e., the 

application of the analytical model relies on an assumption which highly affects the outcomes but can 

currently only be determined with NLFE analyses. To yield realistic predictions of CMA, NLFEA must 

therefore accurately account for the complex mechanical behaviour of RC shell elements, including 

cracking, tension stiffening and compression softening, even though they are generally sensitive to the 

boundary conditions. Remarkably, experimental data for the calibration of NLFEA is extremely scarce. 

Figure 6c) shows the mean concrete compressive stresses, highlighting that they (hence CMA) are much 

less sensitive to the restraint factor 𝜅 than the reinforcement stresses σ𝑠𝑟. On the other hand, the torsional 

stiffness 𝐷𝑥𝑦 increases significantly with κ, see Figure 6d), which is relevant e.g. for deflections of RC 

structures or soil-structure interaction. 
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4. Conclusions and Outlook 

This paper highlights that the behaviour of RC shells is no solved problem: Even though a safe design 

in ULS is straightforward based on the lower bound theorem of plasticity theory, obtaining realistic 

predictions of the load-deformation behaviour or the reinforcement stresses in SLS and FLS requires 

computationally very expensive NLFE analyses. No analytical models, nor sufficient experimental data 

to calibrate NLFE analyses are available for plate elements subjected to general loading, even in the 

simple case without CMA. By assuming proportionality of CMA to the mid-plane strains of a shell 

element, this study enhances a previously proposed analytical model for shell elements subjected to pure 

twisting moments by the effect of CMA. The parametric study with this model, as well as the NLFE 

analyses, highlight that the response is highly sensitive to CMA, with the latter being highly beneficial 

for reinforcement stresses. This should be be leveraged in the design and assessment of RC structures.  

More research is thus required to improve existing methods in the analysis of RC shells by developing 

efficient tools for realistic analyses of plate and shell structures, particularly regarding the reliable 

quantification of CMA. NLFE models must be experimentally validated for general loading including 

CMA, and should be augmented by emerging machine learning-based FEA techniques. Finally, 

simplified approaches for use in practice must be developed to allow for a widespread adaptation. 
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Appendix 

A. Methodology 

Table 4 states the material parameters of the test specimen ML8. 

 
Table 4: Material parameters for the test specimen ML8 [11] 

Material Parameters ML8  Geometrical Parameters ML8 

Young's modulus steel 𝐸𝑠  205 GPa  Plate thickness ℎ  200 mm 
Yield strength steel x 

                                    y 
𝑓𝑠𝑦  412 

479 

MPa 

MPa 
 Plate side widths 𝑠  1700 mm 

Ultimate strength steel 𝑓𝑠𝑢  600(1) MPa  Static depth 𝑑𝑥  168 mm 

Ultimate strain steel 𝜀𝑠𝑢  100(1) ‰   𝑑𝑦 182 mm 

Young's modulus concrete 𝐸𝑐  35.41 GPa  Reinforcement  𝜌𝑥  1.00 % 
Compressive strength concrete 𝑓𝑐𝑐  49.1 MPa  ratios  (𝑎𝑠/ℎ) 𝜌𝑦  0.25 % 
(1) assumptions based on the reinforcing steel designation in [11]     
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B. Results 

B.1 Additional results for specimen ML9 

 
Figure 7: Detailed results of the stress state in test specimen ML9 
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B.2 Results for specimen ML8 

The results of Specimen ML8 are structured analogously to Specimen ML9: Figure 8 shows the load-

deformation behaviour of ML8 and Table 5 provides the results of the EP analysis. 

 
Figure 8: NLFEA results ML8: a) load-deformation behaviour, b) mean compressive stress 𝜎𝑐, c) restraint factor 

𝜅, and d) stiffness 𝐷𝑥𝑦  (corresponding to 𝑘𝑓,1..4 = [0, 13, 120, 1′100] kN/m; 𝑛1..4 see Table 5). Note: Here, 𝐷𝑥𝑦 is 

the secant stiffness, determined from corner deflections 𝑤 assuming homogeneous 𝑚𝑥𝑦 and χ𝑥𝑦:  

𝐷𝑥𝑦 = 𝑚𝑥𝑦/χ𝑥𝑦 = 𝑚𝑥𝑦𝑙2/(4𝑤) 
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Table 5: Ultimate twisting moments according to EP analysis methods for Specimen ML8 

Theory σ𝑐 [N/mm²] 𝑛𝑖 [kN/m] 𝑚𝑥𝑦𝑢 (𝑘 = 1) [kNm/m] 

Normal moment yield condition x 0 0 152 

                                                     y 0 0 37 

Sandwich model x 0 0 96 

                            y 0 0 21 

Sandwich model x -0.48 -96 101 

                            y -1.02 -204 31 

Sandwich model x -4.38 -876 112(1)/135(2) 

                            y -5.92 -1184 80 

Sandwich model x -9.43 -1886 112(1)/135(2) 

                            y -10.40 -2080 112(1)/135(2) 

0.46(1) ≤ 𝑘𝑐 ≤ 0.55(2)  

 

 

Table 6 summarises the stresses in the reinforcement and concrete according to the approximation with 

the NMYC for an EE analysis, and Figure 9 shows the numerical simulation for ML8 including the 

previous diagrams of ML9 for comparison. 

 
Table 6: Results of the stress calculation for tests ML8 according to the NMYC 

 
ML8 

Stresses in the bottom reinforcement σ𝑠,𝑥 

σ𝑠,𝑦 

159 

908 

MPa 

MPa 

Stresses in the top reinforcement σ𝑠,𝑥
′  

σ𝑠,𝑦
′  

58 

-26 

MPa 

MPa 

Stresses in concrete σ𝑐 14 MPa 
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Figure 9: Results of (i) the analytical calculation including 𝜅 for different reinforcement ratios 𝜌 (continuous 

lines), (ii) the numerical simulation for the reinforcement ratio 𝜌 = 1% present in specimens ML8 and ML9 

(dashed lines), and (iii) the normal moment yield condition calculation (dotted lines) for: a) Steel stress, b) Relative 

steel stress, c) Concrete stress, d) Stiffness  
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C. List of Symbols 

𝑎𝑠, 𝑎𝑠′ Top and bottom reinforcement area 

α𝑀𝐾, α𝜅  Parameter indicating position of neutral axes in principal directions of the 

analytical model, in the original case of Marti-Kong (MK) or the amended 

case with restraint factor 𝜅) 

𝑏  Cross-section width (in plates: 𝑏 = 1m) 

 γ𝑥𝑦  Shear strains 

𝐷𝑥𝑦  Torsional stiffness of plate or shell 

𝑑𝑥  Static depht (x-direction) 

𝑑𝑦  Static depth (y-direction) 

δ𝑄  Imposed deformations 

𝐸𝑐  Young's modulus of concrete 

𝐸𝑠  Young's modulus of steel 

𝐸𝐼𝐼, 𝐸𝐼𝐼𝐼 Stiffness in Stages I (uncracked elastic) and II (cracked elastic) 

(see Figure 1) 

ε1  Transverse strains 

ε𝑠𝑢  Ultimate strain of steel 

ε0𝑥, ε0𝑦 Mean strain in the midplane of the shell element in x-and y-direction 

𝐹𝑐   Concrete force 

𝐹𝑠  Steel force 

𝑓𝑐𝑐  Compressive strength of concrete 

𝑓𝑐𝑡  Tensile strength of concrete 

𝑓𝑠𝑢  Ultimate strength of steel 

𝑓𝑠𝑦  Yield strength of steel 

ℎ  Plate thickness 

𝑘  Factor that may be chosen freely 

𝑘𝑐  Concrete compressive strength reduction factor for plastic analysis 

𝑘𝑓,𝑥, 𝑘𝑓,𝑥 Finite element stiffness in x- and y-direction 

κ𝑥 , κ𝑦  Restraint factor in x- and y-direction 

𝑚𝑥𝑦  Twisting moment 

𝑚𝑥, 𝑚𝑦, 𝑚1, 𝑚2 Bending moments in x- and y-direction or principal directions 1 and 2 

𝑚𝑥𝑢, 𝑚𝑦𝑢 Ultimate bending moment in x- and y-direction 

𝑚𝑥𝑦𝑢  Ultimate twisting moment 

𝑛  =
𝐸𝑠

𝐸𝑐
= modular ratio, i.e. ratio of Young’s moduli of concrete and steel 
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𝑛𝑥, 𝑛𝑦, 𝑛𝑥𝑦, 𝑛1, 𝑛2 Normal membrane forces in x- and y-direction or principal directions 1 

and 2 

ρ𝑥, ρ𝑦 Reinforcement ratio (x- and y-direction) 

𝑠  Plate side lengths 

σ𝑐  Concrete stresses 

σ𝑠𝑥, σ𝑠𝑦, σ𝑠𝑥
′ , σ𝑠𝑦′  Reinforcement stresses in x- and y-direction in top and bottom 

reinforcement 

σ𝑠,𝑟𝑒𝑙   = 𝜎𝑠(𝑛𝑖)/𝜎𝑠(𝑛 = 0) Relative stresses in the reinforcement (compared to 

the stresses without any CMA) 

σ𝑠𝑟  Steel stresses at the crack 

τ𝑥𝑦  Shear stresses 

𝑣0  Mean shear stress 

𝑣𝑥, 𝑣𝑦 Shear forces in x- and y-direction 

𝑤  Deformation  

𝑥  Compression zone height or coordinate axis 

ξ  = 𝑥/𝑑 relative depth of compression zone 

χ, χ𝑥𝑦  Curvature, twist 

𝑦  Coordinate axis 

𝑧  Inner lever arm or coordinate (out-of-plane) 

𝑧𝑆𝑀, 𝑧𝑁𝑀𝑌𝐶  Inner lever arm (for sandwich model and normal moment yield condition) 

 

 

 

 


