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Abstract

We describe the flow of forces and moments across a shell starting from the Günther-Schaefer stress
functions for a Cosserat continuum in 3 dimensions and Schaefer’s concept of a Krustenschale or crust
shell. We apply the idea of the flow of forces and moments to a shell in the shape of Enneper’s minimal
surface.
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1. Introduction
In a paper[1] recently published in the journal Meccanica we show how the internal forces and moments
in a shell can be described by 4 vectors, each of which has 3 components in 3 dimensional space, making
12 quantities in total. In this paper we derive the same equations, but in a completely different way,
starting from the Günther-Schaefer stress functions for a Cosserat continuum and Schaefer’s concept of
a Krustenschale or crust shell. This may or may not make the derivations easier to understand, but it
does link our equations with the Günther-Schaefer stress functions, which is interesting in its own right.

The internal forces and moments in a shell under a given load are controlled
by elastic stiffness, together with the effects of prestressing, creep, temperature
changes, plastic deformation and any prestressing. Some of these factors can be
modified, for example varying the thickness varies the stiffness in different parts
of the shell. Thus it is important to be able to understand the equilibrium of shells
independent of elastic analysis, such as that developed by Koiter[2] or a finite ele-
ment analysis.

We show how the 4 vectors can help us understand the equilibrium of a shell carrying a point load in
which both internal forces and internal moments are necessary for equilibrium.

2. A 3 dimensional Cosserat continuum
2.1. The equilibrium equations

In this section we give a brief introduction to the equilibrium equations of a 3 dimensional Cosserat
continuum[3], which are relevant to shell structures where the material is concentrated into a relatively
thin curved layer. A Cosserat continuum contains couple-stresses, that is moments acting per unit area
as well as the more usual stresses, that is force per unit area. An example of a 2 dimensional Cosserat
continuum is a woven wire mesh (figure 1a) - if we assume that the mesh is sufficiently fine to be
considered a continuum. If we consider forces only acting in the x − y plane of the mesh then the
Cosserat moments are acting about the z axis perpendicular to the mesh and are clearly important in the
behaviour of the mesh in its own plane.
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(a) Woven wire mesh.
Photo: Robinson Wire
Cloth Ltd.

(b) Half an onion and
a shell structure made
from a scale extracted
from the other half

(c) A shell structure in
the form of Enneper’s
minimal surface

(d) Point load test of a
model from a packet of
Pringles® using a BIC®

Biro or ballpoint pen.
Figure 1: Wire mesh, an onion, a shell and a model test

Let us begin by reproducing equations (5.1) from Carlson’s paper on the Günther Cosserat stress func-
tions[4] in 3 dimensional space:

tij,i + bj = 0 and (1)

mij,i + ϵjkltkl + cj = 0. (2)
(1) is the equation of equilibrium of forces and (2) is the equation of equilibrium of moments. These
equations are written in the Cartesian tensor notation[5], and for who are unfamiliar with this notation,
let us rewrite the 1st of the 3 equations (1) for j = 1 in engineering notation as used in Timoshenko &
Goodier[6]:

∂σx
∂x

+
∂τyx
∂y

+
∂τzx
∂z

+ bx = 0. (3)

bx, is the applied body loads per unit volume in the x direction. The most common body load is bz =

−ρg.

t11, that is i = 1 and j = 1, in tij in (1) is σx in (3) and t11,1 is
∂σx
∂x

. Similarly t21 is τyx and t21,2 is
∂τyx
∂y

and so on. The comma indicates partial differentiation. The repeated i in tij,i is interpreted as
∑3

i=1 tij,i
by the Einstein summation convention. Thus we can express all the information in (3), together with the
equations in the y and z directions much more briefly as (1), and that is the whole point of the Cartesian
tensor notation.

Similarly we can write the 3rd of the 3 equations of equilibrium of moments (2) by setting j = 3,
∂mxz

∂x
+
∂myz

∂y
+
∂mzz

∂z
+ τxy − τyx + cz = 0. (4)

cz are the applied body couples per unit volume about the z axis and mxz and myz are the components
of Cosserat moment[7]. mxz is the moment per unit area on the face of a little cube whose normal points
in the x direction acting about the z axis. Note that in plate bending the sign convention is normally that
mxx and not mxy is the moment acting about the y axis.

Equation (4) tells us that in general τxy ̸= τyx so that complementary shear stresses are not equal.
Mindlin[3] derives equation (4) using readily understood reasoning and simple diagrams in 2 dimen-
sions. He uses µx instead of mxz and µy instead of myz .

The ϵjkl in (2) are the components of the permutation tensor or Levi-Civita tensor: ϵ123 = ϵ231 = ϵ312 =

1, ϵ321 = ϵ132 = ϵ213 = −1 and all other ϵjkl = 0. We shall explain in due course what we mean by a
tensor. By the summation convention ϵjkltkl =

∑3
k=1

∑3
l=1 ϵjkltkl in (2) and this produces the τxy−τyx

in (4) because j = 3 in that equation and so we only get contributions from k = 1 and l = 2 and from
k = 2 and l = 1.
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2.2. The Günther-Schaefer Cosserat stress functions

In the Note Added in Proof at the end of Carlson’s paper on the Günther Cosserat stress functions[4]
he refers to equations given in a lecture given by Professor Schaefer in September 1965 in Augustów,
Poland, which we repeat here:

tij = ϵipqFqj,p + fj,i and (5)

mij = ϵipqGqj,p + δijFpp − Fji + ϵijpfp + gj,i (6)
and we shall see that these equations automatically satisfy (1) and (2), provided that

∇2fi = −bi and (7)

∇2gi = −ci. (8)

The Kronecker delta, δij =
{

0 if i ̸= j

1 if i = j
and the Laplacian, ∇2 =

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
.

If we substitute (5) into (1) we obtain (ϵipqFqj,p + fj,i),i + bj = ϵipqFqj,ip + fj,ii + bj = ∇2fj + bj = 0

which is (7). The ϵipq are constant in Cartesian coordinates and Fqj,ip is symmetric in i and p, while ϵipq
is antisymmetric, so that ϵipqFqj,ip = 0.

If we substitute (5) and (6) into (2) we obtain
(ϵipqGqj,p + δijFpp − Fji + ϵijpfp + gj,i),i + ϵjkl (ϵkpqFql,p + fl,k) + cj = gj,ii + cj = 0 which is (8).
Note the use of the summed k in writing ϵjklϵkpqFql,p = Fjl,l − Fll,j .

Let us now count up equations and unknowns. If we know bi and ci we can in principal solve (7)
and (8) for fi and gi. The second order tensors with components tij and mij each have 9 components
in 3 dimensions as do the second order tensors with components Fij and Gij . Thus we still have 18
unknowns, even though we have automatically satisfied the 3 equations of equilibrium of forces and the
3 equations of equilibrium of moments.

If bj = 0, cj = 0 andmij = 0 for the unloaded non-Cosserat case then we have fj = 0 and gj = 0 so that
(6) becomes ϵipqGqj,p+δijFpp−Fji = 0. However, then ϵrpqGqr,p+δrrFpp−Frr = ϵrpqGqr,p+2Fpp = 0

since δrr = 3. Therefore Fji = ϵipqGqj,p − δijϵrpqGqr,p or Fqj = ϵjabGbq,a − δjqϵrabGbr,a and (5)
becomes tij = ϵipqϵjabGbq,pa − ϵipjϵrabGbr,pa.

We know that tij = tji in the non-Cosserat case and therefore for a non-Cosserat material we need to
set Gbr = Grb so that tij = ϵipqϵjabGbq,pa and Gbq reduce to the Beltrami stress functions.

2.3. Tensors

A tensor is physical object. Scalars are 0th order tensors, vectors are 1st order tensors and quantities such
as stress are 2nd order tensors. In 3 dimensions a tensor of order n has 3n components. The stress tensor
can be written t = σxii+ τxyij+ τxzik+ τyxji+σyjj+ τxzjk+ τzxki+ τyzkj+σzkk = tijeiej where
i = e1, j = e2 and k = e3 are the Cartesian base vectors.

When we write something like ij we mean the tensor product of the two vectors i and j. In general
the tensor product uv of the vectors u and v is defined by uv · w = (uv) · w = u (v ·w) and
w · uv = w · (uv) = (w · u)v where w is any vector and the · represents the inner or scalar product.
Thus uv ·w is a vector in the direction of u, but with a magnitude (v ·w) times that of u. The tensor
product is sometimes written u⊗v and is also called the dyadic product or the outer product. By adding
repeated tensor products of vectors we can produce tensors of any order.

Let us define a small area within a continuum by the vector A. The magnitude of the area is |A|
and A is normal to the area. The force crossing A due to stress is P = Ax (σxi+ τxyj+ τxzk) +

Ay (τyxi+ σyj+ τxzk) + Az (τzxi+ τyzj+ σzk) = (Akek) · (tijeiej) = Aitijej or simply P =
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A · t which is the best way to write it because the relationship applies in the absence of any imagined
coordinate system. In the presence of Cosserat moments t will not be symmetric, so that in general
A · t ̸= t ·A.

2.4. Curvilinear coordinates

It is often convenient to use curvilinear coordinates, and in structural mechanics we usually convect the
coordinates with the material, so that even if the coordinates start off rectilinear, they will become curvi-
linear as the material deforms. The exception to this rule is when the displacements can be considered
‘small’.

Let us suppose that we have three curvilinear coordinates, θi where i = 1, i = 2 or i = 3. We will explain
shortly why they have superscripts, and θi does not mean θ raised to the power i[8, 9]. A point in space
is defined by the intersection of the 3 surfaces θ1 = constant, θ2 = constant and θ3 = constant. In the
case of spherical polar coordinates θ1 = constant is a plane, θ2 = constant is a cone and θ3 = constant
is a sphere. In this special case the surfaces intersect at right angles, but in general this will not be the
case.

We need some base vectors to resolve forces and so on and here we have two choices, firstly what are

called the covariant base vectors, gi =
∂x

∂θi
i+

∂y

∂θi
j+

∂z

∂θi
k and secondly what are called the contravariant

base vectors, gi =
∂θi

∂x
i+

∂θi

∂y
j+

∂θi

∂z
k. This shows why we use both subscripts and superscripts.

g3 is tangent to the curve of intersection of the surfaces θ1 = constant and θ2 = constant and g3 is
normal to the surface θ3 = constant. Thus unless the surfaces intersect at right angles gi and gi will be
in different directions. In addition gi and gi will in general not be unit vectors.

One would have thought that the sensible thing to do would be decide to use only the gi or only the gi,
but in fact it makes sense to use both because we find all sorts of useful properties which follow from

gi · gj = δji =

{
0 if i ̸= j

1 if i = j
. Thus, if v = vxi+ vyj+ vzk is any vector in which vx = v · i etc.,

v = vigi = vig
i, vi = v · gi = gijvj , gij = gi · gj , vi = v · gi = gijv

j and gij = gi · gj .
(9)

gij are the called the components of the metric tensor because the square of the distance between two
adjacent points separated by dθi is gijdθidθj . Note that the summation convention now always involves
one subscript and one superscript, which it why Cartesian tensor equations look plain wrong when one
is used to curvilinear coordinates.

The scalar product of two vectors u and v is u · v = uiv
i = uivi = giju

ivi = gijuivi and the vector
product of two vectors, w = wkgk = wkg

k = u×v = uivjχ
ijkgk = uivjχijkg

k = (uv) : χ = v ·χ·u
- note the use of the double dot : notation. χ is the third order permutation tensor or Levi-Civita tensor
and we have used the symbol χ, rather than the more common ϵ because we want to us ϵ for the
second order permutation tensor on a surface. We have χijk = −χjik = −χikj = (gi × gj) · gk and
χijk = −χjik = −χikj =

(
gi × gj

)
·gk where χ123 =

√
g, χ123 = 1/

√
g and g = det gij . In Cartesian

coordinates, χ = ijk+ jki+ kij− kji− jik− ikj.

We can also differentiate vectors, which means differentiating both their components and the base vec-
tors, v,i =

(
vjgj

)
,i
= vj,igj + vjgj,i = ∇iv

jgj =
(
vjg

j
)
,i
= vj,ig

j + vjg
j
,i = ∇ivjg

j where the

covariant derivatives, ∇iv
j = vj,i + vkΓj

ki and ∇ivj = vj,i − vkΓ
k
ij in which Γk

ij = gk · gi,j are the
Christoffel symbols. The covariant derivatives ∇iv

j and ∇ivj are sometimes written vj:i and vj:i or vj |i
and vj |i.
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We can extend this process to differentiate higher order tensors, introducing more Christoffel symbols.

∇iv
j and ∇ivj are the components of a second order tensor, known as the gradient of v, which is equal

to ∇v = giv,i = ∇iv
jgigj = ∇ivjg

igj . Neither vj,i and vj,i nor Γk
ij are the components of tensors

because they do not represent anything with physical meaning independent of the coordinate system,
which can be seen by examining their behaviour when the coordinate system changes. ∇ is pronounced
nabla or del. Wilson’s book based on J. Willard Gibbs’ lectures[10] and published in 1901 gives the

following as equation (21) of Chapter III: ∇V = i
∂V

∂x
+ j

∂V

∂y
+ k

∂V

∂z
for the gradient of the scalar V ,

which is exactly equivalent to our definition, except we have applied the operator ∇ to a vector.

We can define the gradient of a tensor of any order, Q, independent of a coordinate system by writing
δQ = δθiQ,i = δr · giQ,i = δr · ∇Q where δQ is the change in Q in moving from the point r in space
to the adjacent point r+ δr. ∇Q is a tensor of order 1 higher than that of Q. We can form the gradient
of a scalar (or zeroth order tensor) in exactly the same way.

The divergence, ∇ ·Q = gi ·Q,i is a tensor of order one lower than Q, and so in this case Q cannot be
a scalar.

3. The equilibrium equations and the Günther-Schaefer Cosserat stress functions in
curvilinear coordinates and in coordinate-free notation

We are now in a position to write equations (5.1) from Carlson’s paper on the Günther Cosserat stress
functions[4], which we reproduced as (1) and (2), in curvilinear coordinates

∇it
ij +Bj = 0 and (10)

∇im
i
·j + χjklt

kl + Cj = 0. (11)
We have a certain freedom to move indices up or down, so that mi

·j = gikmkj = gjkm
ik. The dot in

mi
·j is there to show that m = mi

·jgig
j . We have used Bj instead of bj and Cj instead of cj because we

want to reserve the characters b and c for other uses.

We can write the same equations with no coordinates,
∇ · t+B = 0 and (12)

∇ ·m+ χ : t+C = 0 (13)
and we can see that (10) implies (12) and (11) implies (13) and vice versa.

In the same way we can write the Günther-Schaefer Cosserat stress functions, our equations (5) and
(6), as tij = χipq∇pF

·j
q + ∇ifj and mi

·j = χipq∇pG
·j
q + δjiF

·p
p − F ·i

j + χikpgkjfp + ∇ihj in which
∇ifj = ∇kg

ikfj and we have replaced the gj in (6) by hj because the letter g is already in use in (9).

Again we can write these equations without coordinates,
t = χ : ∇F+∇f and (14)

m = χ : ∇G+ I trF− FT + χ · f +∇h (15)
in which I = ii+ jj+ kk = gigi = gijgigj is the unit tensor, FT is the transpose of F and trF = F ·p

p

is the trace of F.

Finally, the equilibrium equations look similar in both Cartesian and curvilinear tensor notation, ∇2fi =

−Bi and ∇2hi = −Ci and with no coordinates, ∇2f = −B and ∇2h = −C.

4. An onion analogy for shells
Thus far we have only considered the equilibrium of a 3 dimensional continuum containing Cosserat
moments. Figure 1b shows half an onion and a shell structure made from an onion scale extracted from
the other half and we can think of the scale as part of continuum, provided that n · t = 0 and n ·m = 0
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so that there are no forces and moments from the adjoining scales. n is the unit normal to the scale. The
scale or shell is still loaded by the body loads B and body couples C. The onion is only introduced as a
way in which we can envisage a shell as part of an imaginary 3 dimensional continuum.

We can write the unit normal as n = ∇η/
√
∇η · ∇η where η is a scalar which is constant on any one

onion scale. If we assume a unit change in η across a scale then the thickness of a scale is equal to
1/

√
∇η · ∇η, which may vary.

The force per unit width and the moment per unit width in a scale are

σ =
t√

∇η · ∇η
and (16)

µ =
m√

∇η · ∇η
(17)

respectively and these equations form the definitions of σ and µ. Note that we are effectively assuming
that t and m are constant though the thickness of the scale or shell. We did not make this assumption
in our Meccanica paper[1], nor did we assume that the shell was thin, or that it did not contain ribs or
voids.

If we imagine that the shell is infinitely thin, then we have to imagine that
√
∇η · ∇η, t and m tend

to infinity, corresponding to Schaefer’s[11, 12] concept of a Krustenschale (crust shell) and therefore to
discontinuities across the shell in the Günther-Schaefer stress functions[13, 14].

The Günther-Schaefer stress function F is a second order tensor which we will now write as

F = ∇ηψ. (18)

This did not appear in Schaefer’s paper[11, 12] and it is the most significant contribution of the current
paper.
The corresponding terms in (15) are I trF− FT =

√
∇η · ∇η ψ · (nI− In) (19)

and in (14) are χ : (∇ηψ) = χ : (∇∇ηψ+∇ψ∇η) =
√

∇η · ∇η ϵ · ∇ψ. (20)
Note that χ : ∇∇η = 0, even though we are dealing with a curved surface. Usually for a curved surface
the order of covariant differentiation is important, and the reason for that is that the contribution of the
curvature of the surface is ignored. However we are actually forming the covariant derivative in flat
3 dimensional Euclidean space and so order of covariant differentiation is immaterial. χ : ∇∇η = 0

leads to the Peterson-Mainardi-Codazzi equations, ϵ : ∇b = 0 where b = − (I− nn) · ∇n is the
symmetric normal curvature tensor, or shape operator, whose covariant components b are known as the
coefficients of the 2nd fundamental form[15, 16]. ϵ : ∇b = 0 is in effect only 2 equations since the
normal component is satisfied identically.

Corresponding to (18), we can also write G = ∇ηϕ. (21)

Let us now introduce the notation ∇Q = (I− nn) · ∇Q which is the gradient of Q in the directions
tangential to the surface. Thus b = −∇n and the mean curvature,

H =
1

2
trb = −1

2
(I− nn) : ∇n = −1

2
∇ · n = −1

2
∇ · n. (22)

The reason that we can use ∇ · n or ∇ · n in this special case is that ∇n · n = 0 because n is a unit
vector.

Now let us consider the vector p, which we shall see is actually the load per unit area on the shell. In
order to define p we need to introduce another another, β to give

−p =
√

∇η · ∇η ∇ · ∇β =
√

∇η · ∇η ∇2
β =

√
∇η · ∇η

(
gi −

(
n · gi

)
n
)
· ((I− nn) · ∇β),i

=
√

∇η · ∇η (∇ · ((I− nn) · ∇β) + n · ∇n · (I− nn) · ∇β) .
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However, n · ∇n · (I− nn) =
1

∇η · ∇η

(
∇η · ∇∇η − (∇η · ∇∇η · ∇η)∇η

∇η · ∇η

)
· (I− nn) (23)

=
∇∇η · ∇η · (I− nn)

∇η · ∇η
=

∇
(√

∇η · ∇η
)
· (I− nn)

√
∇η · ∇η

and so −p =
√

∇η · ∇η ∇2
β = ∇ ·

(√
∇η · ∇η (I− nn) · ∇β

)
= ∇ ·

(√
∇η · ∇η ∇β

)
. (24)

Now in order to use the equation of equilibrium of moments, (13) we need

∇ ·
(√

∇η · ∇η β · (nϵ+ ϵn)
)
= ∇ ·

(√
∇η · ∇η (I− nn) · (β · χ)

)
= ∇

(√
∇η · ∇η

)
· (I− nn) · (β · χ)

+
√

∇η · ∇ηgi ·
(
(I− nn) ·

(
β,i · χ

)
− (n,in+ nn,i) · (β · χ)

)
=

√
∇η · ∇ηn · ∇n · (I− nn) · (β · χ)

+
√

∇η · ∇η
(
gi · (I− nn) · ((gi · ∇β) · χ)− (∇ · nn+ n · ∇n) · (β · χ)

)
=

√
∇η · ∇η

(
−
(
(I− nn) · gigi · ∇β

)
: χ+ 2Hn · (χ · β)

)
= −χ :

(√
∇η · ∇η ∇β

)
+ 2

√
∇η · ∇ηHϵ · β

(25)

where we have again used (23) as well as (22).

Corresponding to (18) and (21) we can write the Günther-Schaefer stress function
f =

√
∇η · ∇η β ·(nϵ+ ϵn) and introducing the vector α we can write h =

√
∇η · ∇η α ·(nϵ+ ϵn).

We are now in a position to use (16) and (14) to write the internal forces in a shell as

σ = ϵ · ∇ψ+∇β (26)

and to use (17) and (15) to write the internal moments as

µ = ϵ · ∇ϕ+∇α+ψ · (nI− In) + β · (nϵ+ ϵn) . (27)

However, this was not a straightforward substitution and we have to justify (26) and (27), by examining
the corresponding stresses (14) t =

√
∇η · ∇η

(
ϵ · ∇ψ+∇β

)
= χ : ∇F +

√
∇η · ∇η ∇β in which

we have used (18) and (20). The Cosserat moments (15) become
m =

√
∇η · ∇η

(
ϵ · ∇ϕ+∇α+ψ · (nI− In) + β · (nϵ+ ϵn)

)
= χ : ∇G+ I trF− FT +

√
∇η · ∇η

(
∇α+ β · (nϵ+ ϵn)

)
.

(28)

in which we have used (21) and (19).

The terms containing F and G will automatically disappear from the equations of equilibrium, as they
did previously. Thus the equation of equilibrium of forces (12) becomes ∇ ·

(√
∇η · ∇η ∇β

)
+B = 0

and so using (24) we have

∇2
β+ p = 0 (29)

where p =
√
∇η · ∇η B and ∇2

β = ∇ · ∇β is the Laplacian of the vector β.

To find the equation of equilibrium of moments we first use (24) with α instead of β and (25) to give

∇ ·
(
m−

(
χ : ∇G+ I trF− FT)) = ∇ ·

(√
∇η · ∇η

(
∇α+ β · (nϵ+ ϵn)

))
=

√
∇η · ∇η ∇2

α−
√

∇η · ∇η χ : ∇β+ 2
√

∇η · ∇ηHϵ · β.
(30)

Then we need χ : (t− χ : ∇F) =
√

∇η · ∇η χ : ∇β (31)
and combining (30) and (31), the equation of equilibrium of moments (13) becomes

∇2
α+ 2Hϵ · β+ c = 0. (32)

7
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where c =
√
∇η · ∇η C is the loading couple per unit surface area of shell.

Equations (29) and (32) are the equations of equilibrium of forces and equilibrium of moments of a shell
corresponding to internal forces and internal moments given by (26) and (27). These 4 equations are
identical to those in our Meccanica paper[1], except here we have used ∇ as the gradient operator in the
tangent plane to the surface, whereas in the Meccanica paper we used just ∇ as the gradient operator
in the tangent plane to the surface. The reason that we were able to do that in the Meccanica paper is
that only used the gradient in the plane of the surface, and did not need the normal component of the
gradient. Equations (29), (32), (26) and (27) do not use the component of the gradient in the direction
of the normal, as we would expect in shell theory.

Thus we have completed our aim of reconciling the Meccanica paper[1] with the Günther-Schaefer
Cosserat stress functions[4].

We should point out that the internal moments in (27) contain a component of Cosserat moment about
the normal, as we discussed concerning the wire mesh in figure 1a. These moments could be important
for certain grid shells, but to follow conventional shell theory we would need to impose the condition
that µ ·n = 0. Again in conventional shell theory it is often assumed that ‘complementary moments’ are
equal. For this to be the case we need to impose the condition that µ · ϵ is symmetric, that is trµ = 0.

5. Elements of force and moment, and the boundary conditions at a free edge
We can use (26) and (27) to find the element of force df and moment dm crossing an imaginary cut dr
in the surface representing the shell, df = dψ− dr · ϵ · ∇β and

dm = dϕ− dr · ϵ · (∇α+ψ · (nI− In) + β · (nϵ+ ϵn)) . (33)

Here m is a vector, of which dm is an element, whereas the quantity m in (28) is a second order tensor
corresponding to the components mij in (2) .

It should be noted that the Cartesian components of β and ψ only contribute to the same component
of df , so that βz only contributes to dfz and so on. The vertical forces ‘flow’ across the surface in the
directions normal to the equipotentials of βz and parallel to the streamlines of ψz . The same applies to
the x and y components of force.

The situation is more complicated for the moment. The Cartesian components of dm are due to
only the same components of α and ϕ, but if we consider the special case when dm = −dr · ϵ ·
(ψzk · (nI− In) + βzk · (nϵ+ ϵn)) then dm · k = 0 so that vertical forces due to βz and ψz produce
moments about horizontal axes, as one would expect.

Along a free edge df = 0 and dm = 0, which is 2 × 3 = 6 boundary conditions, although in the
conventional theory of plates and shells this is reduced by combining normal shear forces and twisting
moments using virtual work[17].

An internal rib of a shell or an edge beam simply represent a concentration of force and moment. These
concentrations correspond to step changes in ψ,ϕ, ∇α and ∇β.

6. An example of a shell in the form of Enneper’s minimal surface
Figure 1c shows a shell structure in the form of Enneper’s minimal surface. All minimal surfaces
can be written using the Enneper-Weierstrass parameterization[15], x = ℜ

{∫ (
1− Y 2

)
Zdw

}
, y =

ℜ
{∫

i
(
1 + Y 2

)
Zdw

}
and z = ℜ

{∫
2Y Zdw

}
where Y = Y (w) and Z = Z (w) are analytic func-

tions of the complex variable w = u+iv. ℜ{} means the real part of and ℑ{} means the imaginary part
of. Enneper’s minimal surface is obtained by writing Y = w and Z = 1 to give x = u + uv2 − u3/3,
y = −v−u2v+v3/3 and z = u2−v2. The curves u = constant and v = constant follow the directions
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(a) Equipotentials of βz
for vertical forces

(b) Streamlines of ψz for
vertical forces

(c) Streamlines of ψz for
purely internal vertical
forces

(d) Streamlines of ψx for
horizontal thrust

Figure 2: Equipotentials and streamlines

of the principal curvatures and form curvilinear squares on the surface. The boundary of the shell in 1c
is the circle in u− v space, u2 + v2 = R2 where R = 0.5. We have chosen to use a minimal surface but
we could equally well have used some other surface, such as the hyperbolic paraboloid.

Figure 1d shows a test of a model of the structure carrying a central point load. The structure undergoes
significant bending deformation during the test prior to failure, together with sliding of the supports.
Tests on a surface with a higher coefficient of friction show a greater stiffness and failure load.

6.1. Internal forces

The vertical force travels from the load to the support in a direction normal to the equipotentials of βz
shown in 2a which satisfy Laplace’s equation ∇2

βz = 0 away from the point load and are obtained by
setting βz = ξ where ζ = ξ + iγ and 2eζ = R/w − w/R.

We could alternatively use ψz = γ to transmit the vertical forces to the support, but this time we do not
actually need to satisfy Laplace’s equation because ψ does not appear in (29). Note that there is then a
step change in ψz if we follow a path all the way around the point load and get back to where we started,
like climbing a spiral staircase. But the gradient of ψz is continuous. However this discontinuity in ψz

does cause some complications when we come to consider moments, so it is better to use βz .

Either way we satisfy the free boundary condition because no vertical force crosses the edge of the shell.

We can add internal forces corresponding to any system of streamlines of ψz which do not cross the
boundary without affecting vertical equilibrium or the boundary conditions. However, we would expect
symmetry conditions to apply and the streamlines in figure 2c have the correct antisymmetry about both
the x and y axes, that is with highs in the north-east and south-west and lows in the north-west and
south-east or vice-versa.

Figure 2d shows possible streamlines for ψx corresponding to boundary thrusts in the x direction, ob-
tained by plotting ψx = γ in eη = (R+ w) / (R− w). Thus, again we satisfy Laplace’s equation, even
though we do not need to. Again we can add purely internal forces, although ψx has to be symmetric
about the x axis and antisymmetric about the y axis, and the other way around for ψy, which would
correspond to internal forces in the y direction.

6.2. Internal moments

The applied loading couple c is almost invariably taken as zero and the mean curvature H = 0 of a
minimal surface. Thus α only has to satisfy Laplace’s equation in (32), and there is no reason to not
simply take α = 0. Thus minimal surfaces are simpler than other surfaces, and in this instance an
Enneper minimal surface is simpler than hyperbolic paraboloid.

9
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If we set dm = 0 and α = 0 in (33) we obtain dϕ = dr · ϵ · (ψ · (nI− In) + β · (nϵ+ ϵn)) and
so if we know β and ψ around the boundary from the considerations in §6.1., then we can calculate
ϕ around the boundary. We can then choose any distribution of ϕ we like within the shell without
affecting equilibrium. Again we would naturally impose symmetry conditions, and we might impose
the requirements µ · n = 0 and trµ = 0.

7. Conclusions
The ideas in this paper are a little complicated, and perhaps can be simplified by further examination.
Nevertheless we have gone some way in understanding what happens when we load a Pringle® with a
Biro.
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