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Abstract 
The Architecture Engineering and Construction (AEC) industry, a significant contributor to global 
greenhouse gas emissions, urgently requires innovative approaches to upscale life cycle assessment 
(LCA) for both new and existing projects to meet emission reduction targets. This can be done through 
further automation of LCA. However, traditional methods for conducting LCAs face challenges due to 
the manual and time-consuming process of data synthesis from heterogeneous sources and the 
interoperability issues among various software tools used by different stakeholders. This research 
introduces a novel automated LCA workflow leveraging the synergies between large language models 
(LLMs) and the open-source computational framework COMPAS. By combining the cognitive 
capabilities of LLMs for processing unstructured data with the computational precision of COMPAS for 
handling 3D geometries, we propose a system capable of conducting LCAs across diverse data sources 
with minimal manual intervention. Our methodology involves segmenting the LCA process into several 
modules, including material data extraction, geometry data conversion, material and geometry data 
integration, life cycle inventory (LCI) data association, LCA calculation, and output integration. This 
modular approach streamlines the LCA process, improving scalability, and also facilitates its adaptation 
to different project scales and complexities. A prototypical implementation using the NEST HiLo project 
demonstrates the feasibility and efficiency of the proposed approach. It shows particular promise for 
reducing the manual labour involved in integrating data that is stored in inconsistent ways.  This research 
marks a step towards achieving fully automated LCA workflows, enhancing the capacity for 
comprehensive environmental assessments in both the planning stages of ongoing projects and the 
evaluation of existing built projects, thus promoting more sustainable construction practices across the 
industry. 

Keywords: LCA, BIM, Interoperability, LLMs, COMPAS, Software integration, embodied emission, AEC, Automation, 
Autonomous Agent  

1. Introduction 
The building industry is responsible for ca. 12.3 Gt of greenhouse gas emissions annually, accounting 
for over a third of global energy and process-related CO2 equivalent emissions [1]. Embodied emissions 
contribute significantly to this total: according to the International Energy Association, non-operational 
emissions from buildings cause an estimated 2.5 Gt of CO2 equivalent emissions (20% of the building 
industry’s total) globally in 2022 [1], while Röck et al. [2] estimated that embodied emissions typically 
account for 20-50% of new buildings’ emissions over 50 years. Life cycle assessment (LCA) is needed 
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for both ongoing projects, to ensure that emissions targets are met, as well as for vast amounts of existing 
built projects in order to create a database to establish benchmarks for embodied carbon (De Wolf and 
Lieve [3]). Accordingly, many LCA tools exist to automate the calculation of embodied emissions in a 
building design, typically by multiplying the Bill of Quantities (BoQ) for materials with the relevant 
environmental characteristics, which can include, e.g., embodied emissions and life cycle scenarios. 

However, in practice, gathering accurate data on the quantity of materials and linking them to 
environmental data is difficult. This involves an elaborate data synthesis process across interdisciplinary 
stakeholders including architects, engineers, manufacturers and LCA experts. Interoperability issues 
often arise among the large variety of professional software options that each stakeholder must rely on 
(De Gaetani et al. [4]). The adoption of Building Information Modelling (BIM) alone does not eliminate 
this problem. While BIM software can serve as an effective central coordination tool, specialised 
applications for each individual discipline are still necessary, as no single software can perform all tasks 
(De Gaetani et al. [4]). In order to generate a BoQ, a dedicated person of integration (typically the BIM 
manager) is required to manually inspect all relevant material information across data sources and input 
them by hand into a BIM software in a consistent way (Carvalho et al. [5], Sampaio et al. [6]). For large 
and complex projects, this can be time-consuming, error-prone and often only happens towards the 
project end, while LCA can be much more beneficial if performed in the early project stages of pre-
design, concept design and developed design (Meex et al. [7], Hollberg et al. [8]). Furthermore, the vast 
majority of existing built projects were not realised using BIM, so gathering accurate material data for 
those projects remains a big challenge. 

Despite many attempts in both industry and academia to build more automated LCA pipelines based on 
various specific software platforms, a path towards a fully automated LCA workflow that can work 
universally across all types of input data sources, remains out of reach. This can be explained by the fact 
that the process of data synthesis cannot be tackled by hard-written computer programs alone; more 
importantly, it requires human-like cognitive capabilities to process and integrate information from 
heterogeneous data sources, which are often fuzzy and unpredictable, as well as to associate them with 
appropriate environmental impact data using expert knowledge. 

This research aims to solve the challenge of manual data synthesis for LCA. To do so, we propose to 
combine large language models (LLMs) with COMPAS (Van Mele et al. [9]), a Python-written, open-
source computational framework, which can act as a computational solver and bridge to a vast amount 
of software applications used in the Architecture Engineering and Construction (AEC) industry. LLMs 
are revolutionary in their potential capacity to perform cognitive tasks at a level comparable to human 
experts (OpenAI et al. [10], Katz et al. [11], Luo et al. [12], Singhal et al. [13]), and linking them to 
COMPAS compensates for their shortcomings in accurate 3D-geometric computations. The goal is to 
create a novel software pipeline that enables fully automated LCA, which can be used universally with 
a diverse range of data sources. 

2. Related works 
A number of reviews have investigated approaches to automate LCA based on BIM or 3D models 
(Guignone et al. [14], Potrč Obrecht et al. [15], Köck et al. [16], Chen et al. [17], Zheng et al. [18], 
Soust-Verdaguer et al. [19]). Approaches found in recent publications can be broadly split into five 
categories: BIM-software plugins, visual programming workflows, standalone tools using industry 
foundation class (IFC) files, Extract Transform Loaded (ETL) tools and machine learning tools. 
However, none of them solve the problem of data synthesis across platforms in a satisfactory way.  

2.1. BIM software plugins 
One popular strategy for automating LCA is through plugins for BIM software, e.g.Tally [20], 
OneClickLCA [21], LCA Link [22] plugins for Revit. These plugins can directly consume BoQs 
generated from BIM software and conduct the LCA without leaving the platform. An obvious limitation 
is that these plugins can only be used inside their host platforms such as Revit, while some stakeholders 
might need to operate on alternatives like Archicad (Guignone et al. [14]). Although a product like 
OneClickLCA provides similar plugins for a wider range of BIM platforms, it still does not address the 



Proceedings of the IASS Symposium 2024 
Redefining the Art of Structural Design 

 

 

 3 

 

initial challenge of manually integrating material information from various specialised software into a 
centralised BIM model; as previously stated, a mono-software solution for all stakeholders is unrealistic. 
In addition, manual association of LCA inventory data to each of the building components is still 
unavoidable, which can become a time-consuming task in large projects. 

2.2. Visual programming 
Another approach to automating LCA is through parametric models created with visual programming 
tools such as Grasshopper for Rhinoceros and Dynamo for Revit (Bueno et al. [23], Hollberg and Ruth 
[24], Bombyx [25]). Compared to ready-built plugins, this approach offers better flexibility and 
potentially a higher level of automation, but at the cost of a steeper learning curve (Guignone et al. [14]). 
However, the issue of platform-specificity persists, as these visual programming workflows are only 
executable inside their host platforms, which also makes it challenging for them to directly interact with 
data provided by other software. 

2.3. Standalone tools + IFC 
A more platform-agnostic way to conduct an automated LCA is to use an open standard such as IFC 
[26], a prevalent data-exchange format for BIM-related applications; thus, the pipeline can work with a 
much larger variety of software (Alwan and Ilhan Jones [27], Ebertshäuser et al. [28], LLatas et al. [29], 
Forth et al. [30]). However, not all design software provide functionalities for straightforward IFC 
export, an example being Rhinoceros, a widely used program for architectural modelling and 
computational design. Even if all software used in a design workflow directly supports IFC, the exported 
IFC files often contain material information in inconsistent formats. As a consequence, a standalone 
interface often must be provided to manually re-assign material information to each element. 

2.4. ETL tools 
A fourth proposal for automated LCA relies on using Extract-Transform-Load (ETL) tools to create data 
pipelines that extract material information directly from native file formats like .rvt for Revit (Shadram 
et al. [31]). Although, in theory, this method can work with any data source, it may suffer scalability 
issues, since new data pipelines have to be manually configured per software and per data storing pattern. 
The high cost and un-transparent pricing terms of dedicated ETL software such as FME [32] can be 
another concern. 

2.5. Machine-learning tools 
There is also an increasing trend of conducting LCA using machine-learning (ML) models that are 
trained end-to-end to predict embodied emission directly from high-level input parameters such as 
building typology, structural types, number of floors, total areas, etc. (Fang et al. [33], Fenton et al. [34]). 
The challenge of this approach is that the accuracy of the ML model highly depends on the quality of 
training data and model architecture. With the decision-making process inside the end-to-end machine-
learning models acting like a black box, there is little way to validate such an approach other than 
comparing the results against a large and high-quality test set of ground-truth data, which is hardly 
accessible (D’Amico et al. [35]). 

Among existing approaches, one important yet unaddressed issue is how to effectively integrate the 
inconsistently stored material data from multiple information sources. While a tool based on LLMs can 
potentially solve this problem in an automated way at scale, research has not yet been published about 
a detailed implementation. 

3. Overview of architecture 
The goal of this research is to explore a novel workflow leading towards a fully automated LCA pipeline, 
being developed to work with a diverse range of data sources. More specifically, the goal is to overcome 
the key bottleneck of manual data synthesis by utilising the COMPAS framework in conjunction with 
Large Language Models. In our pipeline, software packages from the COMPAS ecosystem are used to 
build the underlying infrastructure and act as the “Computational Solver”, while large language models 
such as GPT-4 are used as the “Cognitive Solver” to perform tasks that previously could only be tackled 
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by human experts. Together, they form a powerful autonomous agent that is able to execute advanced 
geometric calculations and complex cognitive tasks of logical reasoning at the same time (Figure 1). 

 
Figure 1. Concept diagram of the proposed system 

Our system divides the data-synthesis process into several independent modules (Figure 2), each 
carrying out one of the following tasks:  

1. Material Data Extraction, whereby information about the material type of each building 
element is extracted and catalogued from different data sources; 

2. Geometry Data Conversion, which involves converting the geometric data of building 
elements into a uniform representation for further calculation;  

3. Material and Geometry Data Integration, in which the material and geometric data are 
combined to create a BoQ, after checking and eliminating any duplicate elements; 

4. LCI Data Association, whereby appropriate life cycle inventory items are assigned to each 
material type presented in the BoQ;  

5. LCA Calculation, whereby the material quantities are multiplied with associated emission 
factors provided by life cycle inventory items; and, 

6. Output Integration, an optional step to integrate the LCA results back into the input sources for 
future decision making. 
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Figure 2. Modules of the data-synthesis process 

Such division ensures distinct functional boundaries of each module, so that they can be improved 
independently in future research, therefore simplifying the complex topic of LCA automation through a 
strategic segmentation. Additionally, these modules can also be used for a wide range of related tasks 
such as cost estimation, structural analysis, and many other types of environmental impact analysis.  

To test this system, we are building a prototypical implementation using NEST HiLo (Block et al. [36]). 
NEST HiLo is an experimental building unit on Empa and Eawag’s NEST platform [37]. It is a modular 
building unit containing many innovative components such as a lightweight funicular floor system, an 
integrated doubly curved thin shell roof, and an adaptive solar façade, etc. (Block et al. [36]) (Figure 3). 
Despite the unit’s moderate scale, its mix of conventional and experimental building components makes 
it a well-suited case study for exploring the challenge of data synthesis in building LCA. 

 
Figure 3. Innovative components of NEST HiLo 
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4. Implementation details 
The following project files from HiLo have been collected so far for an early implementation: two BIM 
models (.ifc), with one being an architectural model exported from Revit, and one detailed geometry 
model for the façade exported from Solidworks; 44 Rhinoceros files (.3dm), containing detailed 
geometry for the two lightweight funicular floors together with all the temporary formworks, detailed 
geometry for the structure of roof, together with full building context; In total, 23,389 individual 
geometric elements are found in these files. 

4.1. Material data extraction 
Extracting material information from multiple software platforms is always challenging because few 
rules have been established for how they should be stored, even with a standardised data-exchange 
format like IFC. This reality stays the same for the HiLo files, where the material information is linked 
to building elements in many different ways. In several Rhinoceros files, the material name is expressed 
in their layer names; in some other files, the name can be a substring of the object name or sometimes 
vaguely mentioned in the description of a block instance. In the IFC file exported from Revit, the 
material information can be obtained from a custom property named “Structural Material”, while in the 
other IFC file exported from Solidworks, the equivalent property is simply named “Material”. The 
language used for material names can be either German or English. For a large number of elements, the 
material was never explicitly assigned. Nevertheless, if a human expert takes a look at the full property 
sheet and the shape of the component, an educated guess can often be made with relatively high 
confidence. 

 
Figure 4. Example prompt extracting implicitly stored material data from a building element 

Writing custom scripts to accommodate such arbitrary data storing patterns is overwhelming and 
unrealistic. However, LLMs can be a perfect candidate to automate such tasks with significantly less 
development work. As a demonstration, we tested the ability of LLMs to identify the materials of a 
sampled list of one thousand building elements found in the different types of files containing various 
metadata, including object names, geometry types, custom properties, spatial hierarchies, layer names 
etc. GPT4 was prompted, through the OpenAI API, to identify the most likely building material of each 
component based on this information. Besides the material name, we also asked it to explain itself in a 
short sentence, accompanied by a score of confidence, so we can inspect and audit LLMs’ decision-
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making process in future analysis (Figure 4). We additionally requested GPT-4 to produce the outputs 
in structured JSON format so they can be directly used as inputs in the next part of the pipeline, without 
manual intervention. For the elements with low confidence scores, we repeat the prompt but this time 
accompanied by a visual aid of the element’s 3D rendering, highlighted from its context, which in many 
cases makes the confidence score significantly higher (Figure 5). This step can be automated as well 
with the help of compas_viewer, a standalone visualiser from COMPAS. For the test sample of one 
thousand elements, the average response time from GPT-4 is 4.2s per request, and can be reduced to 
1.5s if omitting the field “reason” which is used for research inspection purpose. The total cost for one 
thousand prompts is approximately 10 USD. This means the entire material extraction process of 23,389 
building elements from this project can be completed by an LLM in roughly 12 hours at the cost below 
250 USD, while the same workload could take a human operator several weeks at a cost of different 
order of magnitude. 

 
Figure 5. Second-round prompted with 3D visual aid 

4.2. Geometric data conversion 
The second step is to convert the geometric data of building elements from different formats to an 
uniform representation so that we can calculate their volumes and run geometric checks like collision 
detection to resolve conflicts and duplications. This part relies on several COMPAS packages: 
compas_ifc is used for parsing IFC files, and compas_rhino for loading geometries and traversing 
contents in Rhinoceros files. We then convert all geometries to Boundary Representations (BRep) using 
compas_occ, which provides a rich set of APIs to interact with BReps for operations like volume 
calculation and collision detection. 

4.3. Material and geometry data integration 
The next step is to take the outputs from the first two modules and use them to generate a cohesive BoQ. 
The main goal here is to resolve potential conflicts and duplication of building elements that are provided 
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by multiple file sources at different levels of detail (LOD) and project stages. For example, while the 
full architectural model of HiLo already contains the coarse geometries of the façade elements like 
window panels and steel frames, the dedicated façade model offers much more detailed versions of the 
same elements, which should be used instead of the coarse versions (Figure 7). Another example is the 
reinforced concrete base for the curved roof from a Rhinoceros file, where the concrete geometry is 
defined as a simple solid box, excluding the steel rebar geometry buried inside (Figure 8). 

 
Figure 7. Same building elements with geometries of different LOD from two IFC files 

 
Figure 8. Example element where volume of internal geometries should subtracted 

In order to resolve such conflicts, a computational decision tree is constructed, taking both material and 
geometry information extracted earlier as inputs. For example, if we detected two building elements 
colliding, we first check if the two elements are assigned the same material or name; if yes, that is likely 
because they both represent the same element but at a different level of detail. In such a case, we should 
keep the more detailed geometry (higher surface area, lower volume); if not, it is likely a situation similar 
to reinforced concrete. In such a case, we should accordingly subtract the volume of the inner shell from 
the outer ones when calculating the BoQ, effectively subtracting the volume of the rebar from the 
concrete. We iterate through all pairs of elements until all conflicts are resolved (Image 9). At the end 
of this step, a clean BoQ can be generated. 
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Figure 9. Flowchart for data integration 

4.4. LCI data association 
Once the BoQ is created, the next step is to associate each material in the BoQ with corresponding 
inventory items from an LCA database with appropriate functional units. This can be done again by 
iteratively prompting LLMs providing material to be matched with a list of detailed information about 
available LCI items. With GPT-4 currently supporting a maximum text window of 128k tokens [38], it 
is possible to feed the entire inventory data of a typical LCA database such as KBOB [39] directly into 
a single prompt, and get back a matched inventory item. In the case of larger databases, techniques such 
as vectorisation and chunking can be used (Schwaber-Cohen [40]). 

4.5. LCA Calculation 
The LCA calculation consists simply of multiplying the material quantities from the BoQ to emission 
potential factors provided by associated inventory items from the LCA database. In the case the 
functional unit is not volume-based, unit conversions will be needed, which is relatively easy to 
automate. 

4.6. Output integration 
A last optional step is to integrate the LCA results back into the input source files, so that they become 
directly accessible in stakeholders’ original authoring platforms. In the case of this project, the LCA 
results are integrated back using the same packages that were used for reading data. Compas_rhino can 
write LCA data as User Data in Rhino objects, and compas_ifc can be used to write LCA results into 
the property set called “Pset_EnvironmentalImpactIndicators”, which is officially recommended for 
such purposes. 
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5. Discussion 
The main contribution of this research is to explore a path towards a fully automated LCA workflow by 
overcoming the challenge of manual data synthesis from heterogeneous data sources. Such a process is 
time-consuming, error-prone and difficult to automate with conventional tools. Our strategy has been to 
use a combination of COMPAS framework and LLMs, where COMPAS acts as the infrastructure and 
computational solver, and LLMs as the cognitive solver. Together, they form a powerful autonomous 
agent that demonstrates potential to automate the majority of tasks involved in the estimation of 
embodied emission at scale without human intervention. We use NEST HiLo as a case study to build an 
early implementation of this system. Compared to existing approaches, our system is more open and 
customisable, and involves significantly less manual work at potentially a much lower cost. By 
integrating the cognitive ability of LLMs to process inconsistent and unstructured inputs, such a system 
can provide unparalleled flexibility to work seamlessly with any information sources with arbitrary data 
storing patterns. This capability is not only useful for conducting LCA in the early project stages, where 
the material information is scattered and unintegrated but will also make it significantly easier to conduct 
assessments on countless built projects that were not centrally planned with tools like BIM.  

Despite the significant potential of our approach, a number of limitations still need to be fully 
investigated and resolved. First of all, a thorough comparison will be conducted between the LLM-based 
solution and conventional manual procedures in terms of error rates, time efficiency, and financial costs. 
Secondly a larger variety of data sources can be included into the pipeline, such as native formats of 
other applications, text-based documents, excel sheets, and even 2D drawings. Finally, the integration 
and benchmark using different LLMs other than OpenAI’s GPT-4, especially open-source alternatives 
like Llama 2 will be included, to reduce reliance on proprietary models. The authors are therefore 
currently working on a full implementation and validation of the proposed system. 

References 
[1] ‘Tracking Clean Energy Progress 2023 – Analysis’, IEA. Accessed: Apr. 08, 2024. [Online]. 

Available:  https://www.iea.org/energy-system/buildings#tracking  
[2] M. Röck et al., ‘Embodied GHG emissions of buildings – The hidden challenge for effective 

climate change mitigation’, Appl. Energy, vol. 258, p. 114107, Jan. 2020, doi: 
10.1016/j.apenergy.2019.114107. 

[3] D. Wolf and C. (Catherine E. Lieve), ‘Low carbon pathways for structural design : embodied life 
cycle impacts of building structures’, Thesis, Massachusetts Institute of Technology, 2017. 
Accessed: Apr. 08, 2024. [Online]. Available: https://dspace.mit.edu/handle/1721.1/111491 

[4] C. I. De Gaetani, M. Mert, and F. Migliaccio, ‘Interoperability Analyses of BIM Platforms for 
Construction Management’, Appl. Sci., vol. 10, no. 13, Art. no. 13, Jan. 2020, doi: 
10.3390/app10134437. 

[5] J. P. Carvalho, I. Alecrim, L. Bragança, and R. Mateus, ‘Integrating BIM-Based LCA and 
Building Sustainability Assessment’, Sustainability, vol. 12, no. 18, Art. no. 18, Jan. 2020, doi: 
10.3390/su12187468. 

[6] A. Z. Sampaio, G. Azevedo, and A. Gomes, ‘BIM Manager Role in the Integration and 
Coordination of Construction Projects’, Buildings, vol. 13, no. 8, Art. no. 8, Aug. 2023, doi: 
10.3390/buildings13082101. 

[7] E. Meex, A. Hollberg, E. Knapen, L. Hildebrand, and G. Verbeeck, ‘Requirements for applying 
LCA-based environmental impact assessment tools in the early stages of building design’, Build. 
Environ., vol. 133, pp. 228–236, Apr. 2018, doi: 10.1016/j.buildenv.2018.02.016. 

[8] A. Hollberg, G. Genova, and G. Habert, ‘Evaluation of BIM-based LCA results for building 
design’, Autom. Constr., vol. 109, p. 102972, Jan. 2020, doi: 10.1016/j.autcon.2019.102972. 

[9] T. Van Mele, G. Casas, L. Chen, and C. Kasirer, ‘COMPAS’. COMPAS Association. Accessed: 
Sep. 16, 2023. [Online]. Available: https://compas.dev/ 

[10] OpenAI et al., ‘GPT-4 Technical Report’. arXiv, Mar. 04, 2024. doi: 10.48550/arXiv.2303.08774. 
[11] D. M. Katz, M. J. Bommarito, S. Gao, and P. Arredondo, ‘GPT-4 Passes the Bar Exam’. 

Rochester, NY, Mar. 15, 2023. doi: 10.2139/ssrn.4389233. 



Proceedings of the IASS Symposium 2024 
Redefining the Art of Structural Design 

 

 

 11 

 

[12] X. Luo et al., ‘Large language models surpass human experts in predicting neuroscience results’. 
arXiv, Mar. 14, 2024. doi: 10.48550/arXiv.2403.03230. 

[13] K. Singhal et al., ‘Towards Expert-Level Medical Question Answering with Large Language 
Models’. arXiv, May 16, 2023. doi: 10.48550/arXiv.2305.09617. 

[14] G. Guignone, J. L. Calmon, D. Vieira, and A. Bravo, ‘BIM and LCA integration methodologies: 
A critical analysis and proposed guidelines’, J. Build. Eng., vol. 73, p. 106780, Aug. 2023, doi: 
10.1016/j.jobe.2023.106780. 

[15] T. Potrč Obrecht, M. Röck, E. Hoxha, and A. Passer, ‘BIM and LCA Integration: A Systematic 
Literature Review’, Sustainability, vol. 12, no. 14, Art. no. 14, Jan. 2020, doi: 
10.3390/su12145534. 

[16] B. Köck, A. Friedl, S. Serna Loaiza, W. Wukovits, and B. Mihalyi-Schneider, ‘Automation of 
Life Cycle Assessment—A Critical Review of Developments in the Field of Life Cycle Inventory 
Analysis’, Sustainability, vol. 15, no. 6, Art. no. 6, Jan. 2023, doi: 10.3390/su15065531. 

[17] Z. Chen, L. Chen, X. Zhou, L. Huang, M. Sandanayake, and P.-S. Yap, ‘Recent Technological 
Advancements in BIM and LCA Integration for Sustainable Construction: A Review’, 
Sustainability, vol. 16, no. 3, Art. no. 3, Jan. 2024, doi: 10.3390/su16031340. 

[18] B. Zheng, M. Hussain, Y. Yang, A. P. C. Chan, and H.-L. Chi, ‘Trade-offs between accuracy 
and efficiency in BIM-LCA integration’, Eng. Constr. Archit. Manag., vol. ahead-of-print, no. 
ahead-of-print, Jan. 2023, doi: 10.1108/ECAM-03-2023-0270. 

[19] B. Soust-Verdaguer, C. Llatas, and A. García-Martínez, ‘Critical review of bim-based LCA 
method to buildings’, Energy Build., vol. 136, pp. 110–120, Feb. 2017, doi: 
10.1016/j.enbuild.2016.12.009. 

[20] ‘Tally’. Accessed: Apr. 07, 2024. [Online]. Available: https://www.choosetally.com/ 
[21] ‘One Click LCA | Revit | Autodesk App Store’. Accessed: Apr. 07, 2024. [Online]. Available: 

https://apps.autodesk.com/RVT/en/Detail/Index?id=3065869958781255107&appLang=en&os=W
in64 

[22] ‘LCAlink | carbon calculating | New Zealand’, LCAlink NZ. Accessed: Apr. 07, 2024. [Online]. 
Available: https://www.lcalink.co.nz 

[23] C. Bueno, L. M. Pereira, and M. M. Fabricio, ‘Life cycle assessment and environmental-based 
choices at the early design stages: an application using building information modelling’, Archit. 
Eng. Des. Manag., vol. 14, no. 5, pp. 332–346, Sep. 2018, doi: 10.1080/17452007.2018.1458593. 

[24] A. Hollberg and J. Ruth, ‘LCA in architectural design—a parametric approach’, Int. J. Life Cycle 
Assess., vol. 21, no. 7, pp. 943–960, Jul. 2016, doi: 10.1007/s11367-016-1065-1. 

[25] Bombyx, ‘Bombyx-ETH/Bombyx’. Dec. 10, 2023. Accessed: Apr. 08, 2024. [Online]. Available: 
https://github.com/Bombyx-ETH/Bombyx 

[26] ‘Industry Foundation Classes (IFC)’, buildingSMART Technical. Accessed: Sep. 16, 2023. 
[Online]. Available: https://technical.buildingsmart.org/standards/ifc/ 

[27] Z. Alwan and B. Ilhan Jones, ‘IFC-based embodied carbon benchmarking for early design 
analysis’, Autom. Constr., vol. 142, p. 104505, Oct. 2022, doi: 10.1016/j.autcon.2022.104505. 

[28] S. Ebertshäuser, K. Graf, P. Von Both, K. Rexroth, R. Di Bari, and R. Horn, ‘Sustainable building 
information modeling in the context of model-based integral planning’, IOP Conf. Ser. Earth 
Environ. Sci., vol. 323, no. 1, p. 012113, Aug. 2019, doi: 10.1088/1755-1315/323/1/012113. 

[29] C. LLatas, B. Soust-Verdaguer, A. Hollberg, E. Palumbo, and R. Quiñones, ‘BIM-based LCSA 
application in early design stages using IFC’, Autom. Constr., vol. 138, p. 104259, Jun. 2022, doi: 
10.1016/j.autcon.2022.104259. 

[30] K. Forth, A. Braun, and A. Borrmann, ‘BIM-integrated LCA - model analysis and implementation 
for practice’, IOP Conf. Ser. Earth Environ. Sci., vol. 323, no. 1, p. 012100, Aug. 2019, doi: 
10.1088/1755-1315/323/1/012100. 

[31] F. Shadram, T. D. Johansson, W. Lu, J. Schade, and T. Olofsson, ‘An integrated BIM-based 
framework for minimizing embodied energy during building design’, Energy Build., vol. 128, pp. 
592–604, Sep. 2016, doi: 10.1016/j.enbuild.2016.07.007. 

[32] ‘FME-Pricing’, FME by Safe Software. Accessed: Apr. 07, 2024. [Online]. Available: 
https://fme.safe.com/pricing/ 



Proceedings of the IASS Symposium 2024 
Redefining the Art of Structural Design 

 

 

 12 

 

[33] D. Fang, S. V. Kuhn, W. Kaufmann, M. A. Kraus, and C. Mueller, ‘Quantifying the influence of 
continuous and discrete design decisions using sensitivities’, Adv. Archit. Geom. 2023, pp. 411–
426, Oct. 2023, doi: 10.1515/9783111162683-031. 

[34] S. K. Fenton, K. D. Rycke, and L. D. Laet, ‘Predicting embodied carbon of building structure 
types through machine learning.’, 2023. 

[35] B. D’Amico et al., ‘Machine Learning for Sustainable Structures: A Call for Data’, Structures, 
vol. 19, pp. 1–4, Jun. 2019, doi: 10.1016/j.istruc.2018.11.013. 

[36] P. Block et al., ‘NEST HiLo: Investigating lightweight construction and adaptive energy systems’, 
J. Build. Eng., vol. 12, pp. 332–341, Jul. 2017, doi: 10.1016/j.jobe.2017.06.013. 

[37] ‘Empa - NEST - Homepage’. Accessed: Apr. 08, 2024. [Online]. Available: 
https://www.empa.ch/web/nest 

[38] ‘New models and developer products announced at DevDay’. Accessed: Apr. 08, 2024. [Online]. 
Available: https://openai.com/blog/new-models-and-developer-products-announced-at-devday 

[39] K. der B. L. der öffentlichen B. KBOB, ‘Ökobilanzdaten im Baubereich’. Accessed: Apr. 08, 
2024. [Online]. Available: https://www.kbob.admin.ch/kbob/de/home/themen-
leistungen/nachhaltiges-bauen/oekobilanzdaten_baubereich.html 

[40] R. Schwaber-Cohen, ‘Chunking Strategies for LLM Applications | Pinecone’. Accessed: Apr. 08, 
2024. [Online]. Available: https://www.pinecone.io/learn/chunking-strategies/ 

 


	Abstract
	1. Introduction
	2. Related works
	2.1. BIM software plugins
	2.2. Visual programming
	2.3. Standalone tools + IFC
	2.4. ETL tools
	2.5. Machine-learning tools

	3. Overview of architecture
	4. Implementation details
	4.1. Material data extraction
	4.2. Geometric data conversion
	4.3. Material and geometry data integration
	4.4. LCI data association
	4.5. LCA Calculation
	4.6. Output integration

	5. Discussion
	References

