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Abstract 

Deployable structures have broad application prospects in engineering due to their advantages. In 

engineering, deployable structures may contain uncertain parameters which may lead to the deviation of 

the dynamic response of deployable structures from design. In this study, the uncertain analysis of 

deployable structures is conducted based on finite particle method (FPM) and Chebyshev polynomial 

method, which have low computational cost. Firstly, the modeling method of deployable structures and 

the corresponding elements of FPM are briefly described, respectively. Subsequently, the Chebyshev 

polynomial method is introduced and a non-intrusive uncertainty analysis method is proposed by 

combining FPM and the Chebyshev polynomial method. Finally, the uncertain dynamic analysis of a 

typical deployable structure is conducted. 
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1. Introduction 

Deployable structures have many advantages compared to conventional structures. Hence deployable 

structures have broad application prospects in civil engineering [1], aerospace engineering [2], rescue 

engineering [3], medical engineering [3], etc. Many researchers focus on the deployment process and 

dynamic responses of deployable structures. Zheng et al. [4] proposed an enhanced simplified modeling 

method of Bennett linkage considering link cross-sectional sizes and contacts to analyze its dynamic 

response during deployment process. 

Most previous studies on the dynamic analysis of deployable structure have focused on the deterministic 

parameters of deployable structure. However, the deployment structure may inevitably contain 

uncertainty parameters in engineering. The main challenge of studying the dynamics of deployment 

structure with uncertain parameters is the description of uncertain parameters. There are two main types 

of methods to describe the uncertain parameters: the probabilistic methods [5] which are usually used to 

analyze the random parameters with known probability density functions and the non-probabilistic 

methods [6] which are usually used to analyze the uncertain parameters with bounds. In engineering, it 

is well known that the complete probabilistic information of the parameters is often difficult to obtain, 

and the probabilistic methods cannot solve the above problems. 

The interval method is a commonly used non-probabilistic method, and is widely applied in analyzing 

uncertainty issues involving interval parameters. Revol et al. [7] proved that the results obtained by using 

the interval method can satisfy the containment property. Chebyshev polynomial method [6, 8] is a well-

developed interval method in uncertainty analysis, which can determine the lower and upper bounds by 

solving an interval polynomial function [6, 8]. It is noting that Chebyshev polynomial method can build 
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a surrogate model between the uncertain interval parameters and the structural responses of deployable 

structures based on a small number of interpolation points, which is suitable for analyzing the uncertainty 

of deployable structure in engineering. Therefore, Chebyshev polynomial method is used to quantify the 

uncertainty of the structural responses in this study. 

The deployment process of deployable structures involves the coupling of rigid-body motion and 

structural deformation. Common dynamic analysis methods, including finite element method (FEM) 

and multi-body dynamics (MBD), have difficulties when analyzing the dynamic responses of deployable 

structures. FEM has difficulties in analyzing the motion of deployable structure. MBD [9, 10] might 

have difficulties in obtaining structural internal forces. The finite particle method (FPM) is an alternative 

approach developed based on vector-form mechanics and has been successfully applied to the analysis 

of structures involving rigid-body motion, including kinematically indeterminate structures [11], 

deployable structures [4] and mechanism with clearance joints [12-14]. FPM can separate structural 

deformation from rigid-body motion by virtual reverse motion. Moreover, FPM exhibits excellent 

scalability and can be integrable with other analysis approaches easily. Therefore, it is possible to 

effectively conduct the uncertainty analysis of the entire process of deployable structure by combining 

Chebyshev polynomial method and FPM. 

In this study, the uncertain analysis of deployable structures is conducted based on finite particle method 

(FPM) and Chebyshev polynomial method, which have low computational cost. Firstly, the modeling 

method of deployable structures and the corresponding elements of FPM are briefly described, 

respectively. Subsequently, the Chebyshev polynomial method is introduced and a non-intrusive 

uncertainty analysis method is proposed by combining FPM and the Chebyshev polynomial method. 

Finally, the uncertain dynamic analysis of a typical deployable structure is conducted. 

2. Analysis method of deployable structures based on FPM 

In FPM, deployable structures are discreted by particles and elements. Particles have mass and are 

subjected to forces, while elements characterize the interaction relationships between particles. The 

equations of motion of a particle follow Newton's second law. A particle has three translational DOFs 

and three rotational DOFs, and the equations of motion are expressed as: 

 𝑚𝐝̈ = 𝐅ext − ∑𝐟 − 𝐅dmp (1) 

 𝐈𝛉̈ = 𝐌ext − ∑𝐦−𝐌dmp (2) 

where 𝑚 is the mass of the particle, d is the particle translational displacement vector, 𝐅ext is the particle 

external force vector, ∑𝐟  is the particle internal force passed from beam elements, 𝐅dmp =  is the 

damping force, 𝛉 is the particle rotational displacement vector, 𝐌ext is the particle external moment 

vector, ∑𝐦 is the particle internal moment vector passed form beam elements, 𝐌dmp is the damping 

moment, 𝐈 is the inertia matrix of the particle, and 𝐝̇ and 𝛉̇ are the particle translational and rotational 

velocities, respectively. 

Deployable structures typically comprise links and revolute hinges, as illustrated in Figure 1. Beam 

elements and revolute hinge elements in FPM are adopted to model the links and revolute hinges of 

deployable structures, respectively. The internal forces of beam elements are calculated based on the 

Euler-Bernoulli beam theory and fictitious reverse motion. The motion of the particles in revolute hinge 

elements are modeled by coupling the translational degrees of freedom and the degrees of freedom 

perpendicular to the rotational axis. Interested readers are referred to the literature [4] for more details 

of the derivation. 
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Figure 1: Physical model of deployable structure 

Additionally, it is essential to consider physical phenomenon during the deployment process of 

deployable structures, such as size effects of links and contact constraints between the end cross-sections. 

Virtual beam elements and face-to-face contact elements of FPM are developed to model the size effects 

and contact constraints mentioned above, respectively. Torsion spring elements have been developed to 

provide the expanding driving force of deployable structures. The details of the derivations of the above 

analysis elements can be referred to the literature [4]. 

3. Approximation method of dynamic response based on Chebyshev polynomial method 

Chebyshev polynomial method is a commonly used for approximating continuous polynomials. It has 

been demonstrated that the approximation accuracy of Chebyshev polynomials is better than most other 

types of truncated series. Additionally, the Chebyshev polynomial method does not require the high-

order derivatives of interval functions. The upper and lower bounds of the responses can be determined 

by Chebyshev surrogate models, which is one of the most computationally efficient ways to evaluate 

the mentioned bounds and effectively controls wrapping effect from the interval arithmetic operations. 

The details of the Chebyshev polynomial method are provided in the literature [8].  

A k-dimensional continuous function 𝑓(𝐱) can be approximated by the multi-dimensional Chebyshev 

polynomials. For a multi-dimensional problem, the polynomial of degree n of Chebyshev polynomials 

is expressed as: 

 𝐶𝑖1𝑖2…𝑖𝑘(𝐱) = 𝐶𝑖1𝑖2…𝑖𝑘(𝑥1, 𝑥2, … , 𝑥𝑘) = cos(𝑖1𝜃1) cos(𝑖2𝜃2)… cos⁡(𝑖𝑘𝜃𝑘) (3) 

where the subscript 𝑖𝑖 = 0,1,2, … , 𝑛  represents the degree of the Chebyshev polynomial, 𝜃𝑖 =

arccos⁡(
2𝑥𝑖−(𝑋𝑖+𝑋𝑖)

𝑋𝑖−𝑋𝑖
) ∈ [0, 𝜋] , and 𝐱 = [𝑥1, 𝑥2, … , 𝑥𝑘]

T  is a k-dimensional vector. Then the k-

dimensional continuous function 𝑓(𝐱) can be approximated as  

 𝑓(𝐱) ≈ ∑ …∑ (
1

2
)
𝑙
𝑓𝑖1,…,𝑖𝑘𝐶𝑖1,…,𝑖𝑘(𝐱)

𝑛
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 (4) 

where the constant coefficient 𝑓
𝑖1,…,𝑖𝑘

 in the multi-dimensional problem can be calculated as [8] 
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 (5) 

where 𝑥𝑖
𝑗𝑖 =

𝑋𝑖+𝑋𝑖

2
+

𝑋𝑖−𝑋𝑖

2
cos𝜃𝑖

𝑗𝑖 and 𝜃𝑖
𝑗𝑖 =

2𝑗𝑖−1

𝑛+1

𝜋

2
, 𝑗𝑖 = 1,2,… , 𝑘⁡and 𝑖 = 1,2,… , 𝑛 + 1. 

When analyzing the deployment process of a deployable structure, the system is assumed to contain k 

uncertain parameters of which the bounds have got. The above uncertain system can be transformed into 

(𝑛 + 1)𝑘 systems with deterministic parameters based on the Chebyshev polynomial method, which 
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effectively reduced computational costs. Then the above systems can be established computational 

models and analyzed the dynamic responses of them by using FPM. Furthermore, a surrogate model 

between the interval parameters and structural responses is established through the Chebyshev 

polynomial method. Finally, the upper and lower bounds of the target response during the entire 

deployment process of the deployable structure are obtained through iterative calculations and interval 

arithmetic operations. 

4. Uncertain analysis of deployable structure. 

In this section, a typical deployable structure with an interval parameter is analyzed. It is noted that 

discussion focuses on the system with only one uncertain parameter is discussed in this paper. 

Bennett linkage is a widely used deployable structure, whose deployment process is shown in Figure 2 

The uncertain responses of the mechanism is analyzed by the non-intrusive algorithm based on 

Chebyshev polynomial method and FPM. The schematic of Bennett linkage is shown in Figure 3. 

Bennett linkage is composed of four links and four revolute joints. The parameters of Bennett linkage 

are given in Table 1. The side length of square cross-section of links s assumed to contain 1% of its 

nominal value, which is expressed as 

 𝑎̂ = 𝑎(1 + 0.01𝜉) (6) 

Bennett linkage is modeled by beam elements, revolute hinge elements, virtual beam element, face-to-

face contact elements, and torsion elements. The details of the computational model can be referred to 

the literature [4]. The surrogate model between 𝑎̂ and the structual responses is established by 3rd-order 

Chebyshev polynomials. The uncertain displacement response and uncertain velocity response of 

Bennett linkage are analyzed, respectively. 

Table 1: Geometrical and material parameters of Bennett linkage 

Parameter Value 

Length of link 𝐿⁡(m) 0.45 

Side length of square cross-section of 

link 𝑎 (m) 
0.035 

𝜔 (°) 54.7 

𝜇B (°) 22.5 

𝜆 (°) 45.0 

Young’s modulus of link 𝐸 (Pa) 1 × 109 

Poisson’s ratio of link 𝜈 0.3 

Density of link 𝜌 (kg/m3) 800 

Contact stiffness per unit length of face-

to-face contact element 𝐾𝐶 (N/rad) 
1 × 104 

Torsional stiffness per unit length of 

torsion spring element 𝐾𝐹 (N/rad) 
5 

 

 

Figure 2: Deployment process of Bennett linkage 
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Figure 3: Schematic of Bennett linkage 

Figure 4(a) depicts the time histories of the distance between point B and D. It can be observed that the 

distance responses of the mechanism with an interval parameter 𝑎̂ are close to that of the mechanism 

with deterministic parameters during the deployment process for a period of 1 s. The upper and lower 

bounds of the distance BD are similar to each other during the first-time deployment process, indicating 

a minor influence of 𝑎̂ on the uncertainty of distance response. The difference between the bounds does 

not increase significantly during the second-time deployment process, with a maximum difference of 

0.063 m. 

Figure 4(b) illustrates the time histories of the velocity of the z-directional velocity of point B. It can be 

observed that before the first-time collision between the end cross-sections, the upper and lower 

boundary curves essentially coincide with each other; after the first-time collision, the oscillation of the 

curve intensifies, and the difference between the velocity response of the mechanism with an interval 

parameter 𝑎̂ and that with deterministic parameters gradually increase, which indicates that the collision 

may intensify the uncertainty of response. During the second-time deployment process, the difference 

between the bounds increases, with a maximum difference of 4.38 m/s.  

  
(a) (b) 

Figure 4: Time histories of dynamic response of Bennett linkage: (a) distance BD; (b) z-directional velocity of 

point B 

5. Conclusion 

In this study, the uncertain analysis of deployable structures is conducted based on FPM and Chebyshev 

polynomial method, which have low computational cost. The uncertain dynamic responses of a typical 

Link

Revolute joint
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deployable structure are analyzed considering an interval parameter by the proposed method. The results 

indicate that the uncertainty of the side length of square cross-section of link has a weaker impact on the 

structural response uncertainty due to the value of it being relatively small. Moreover, the collision 

during the deployment process may enhance the response uncertainty, and the strong interactions of 

deployable structures during the deployment process should be avoided. 
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