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Abstract 
Structural design is underpinned by stress distribution analysis, typically performed using Finite Element 
Analysis (FEA) to simulate complex physical phenomena. However, the computational demands of 
high-fidelity simulations can be prohibitive, hindering iterative design optimization workflows. Recent 
advances in deep learning provide a promising alternative through the training of surrogate models to 
approximate FEA responses, thus bypassing numerical solution methods. While grid-based surrogate 
models have shown efficacy in this area, their dependence on fixed resolutions limits their ability to 
handle irregular geometries. To overcome this challenge, we propose a novel framework utilizing graph 
neural networks (GNNs), allowing for a flexible representation of non-uniform geometries and 
mechanical conditions. Our approach encompasses the entire pipeline, from data synthesis to model 
training. It contributes to an extendable dataset with variations in geometries, loads, and boundary 
conditions of steel plates with holes. The surrogate model, employing a specialized MESHGRAPHNETS 
architecture, adeptly captures the complex underlying physics, enabling rapid prediction of stress 
distribution for unseen cases. The results demonstrate the model’s efficiency and accuracy in 
accelerating unstructured mesh FEA, with generalizability across shapes, mesh resolutions, and 
mechanical settings. 
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1. Introduction
Accurate prediction of physical responses underpins engineering applications across various domains. 
Finite Element Analysis (FEA), a well-established physics-based modeling method, has proven to be a 
reliable tool for numerically solving underlying partial differential equations (PDEs) and remains the 
industry standard for simulating complex physical phenomena, including solid and fluid mechanics, 
material science, and aerodynamics. However, high-fidelity FEA simulations can be computationally 
intensive (Bolandi et al. [1]) and reliant on expert participation (Nath et al. [2]), specific software or 
platforms, posing challenges to real-world applications, particularly iterative design optimization 
workflows (Cao et al. [3]) that require numerous simulations with varying parameters in real-time. 

To overcome these limitations, deep learning (DL) techniques offer a promising avenue through 
surrogate models for the regression of FEA solutions. Since FEA-based simulations can be conducted 
on either regular grids or unstructured meshes, DL-based models such as convolutional neural networks 
(CNNs) and graph neural networks (GNNs) have gained traction for their ability to handle these two 
types of FEA representations seamlessly. Compared with fixed-resolution grids, mesh-based 
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representation excels in modeling angled or curved geometries, where vertices in a mesh can be allocated 
unevenly, thus budgeting in important regions that contain complex shapes or require higher precision. 
Within the context of GNNs, finite elements and their physical properties can be naturally represented 
as nodes in the graph, with connectivity as edges.  

This study aims to explore the feasibility and challenges of training and utilizing a GNN-based surrogate 
model for accelerating unstructured mesh FEA. Specifically, we focus on predicting the stress 
distribution in 2D steel plates with holes under various load conditions – a ubiquitous structural 
component across various industries.  

Our work makes three key contributions: 

• We integrate parametric modeling with FEA to generate a large-scale dataset, which 
accommodates variations in geometries, mesh resolutions, and mechanical configurations, 
allowing for the training of robust and generalizable models. 

• We propose a tailored MESHGRAPHNETS architecture optimized for accelerating FEA, 
particularly for stress distribution in thin plates with holes. 

• We demonstrate the effectiveness of our method by applying it to predict stress distribution in 
unseen cases and employing evaluation metrics to assess the model’s predictive accuracy, 
providing insights into its potential for real-world applications. 

2. Related work 
Deep learning presents significant advantages for surrogate models in FEA, offering their ability to 
approximate high-dimensional non-linear relationships (Tang et al. [4]) and achieve computational 
efficiency. In stress analysis, DL-based surrogate models can be broadly categorized into two prominent 
approaches depending on how input data are represented: grid-based and mesh-based approaches.  

2.1. Grid-based surrogate models 
Grid-based models excel at handling Euclidean input, such as images, utilizing DL techniques like 
generative adversarial networks (GANs) and CNNs. These models have been successful on data with an 
underlying grid-like structure (Bronstein et al. [5]) due to their inherent inductive biases, like translation 
invariance, weight sharing, and locality. These properties align with the demands of FEA using regular 
grids and continuum-based models (Gulakala et al. [6]).  

Grid-based models have proven effective in various applications, including stress field prediction using 
CNNs (Rezasefat and Hogan [7]) and conditional GANs in solid structures (Hoq et al. [8], Nie et al. [9], 
Jiang et al. [10]), U-Net for mechanical responses in microstructures (Khorrami et al. [11]). However, 
grid-based surrogate models have inevitable limitations. Their dependence on a fixed resolution requires 
identical input sizes, posing challenges for domains with variable lengths. Additionally, grid-based 
models are restricted to structured rectangular domains (typically 2D quadrilateral or 3D hexahedron 
meshes with uniform side lengths). Such regularity of grids lacks flexibility in conforming to complex 
geometries with curved boundaries. These limitations make grid-based models less suitable for scenarios 
involving unstructured meshes, which are commonly adopted across various engineering disciplines. 
Consequently, this necessitates the exploration of alternative approaches like mesh-based surrogate 
models. 

2.2. Mesh-based surrogate models 
Modeling mesh-based physical processes encompasses structured (Fu et al. [12]) and unstructured (Pfaff 
et al. [13], Sanchez-Gonzalez et al. [14]) meshes. Unstructured meshes feature irregular arrangements 
of non-uniform cells, enabling adaptive resolutions within the computational domain. This flexibility 
allows FEA simulations using unstructured meshes to achieve superior accuracy, particularly in regions 
with sharp gradients, and achieve more cost-efficient performance, thus mitigating the limitations of 
grid-based models.  

Harnessing intuitive mesh-to-graph mapping, GNNs are commonly employed in mesh-based surrogate 
models owing to their capability to process non-Euclidean data structures, inheriting all the advantages 
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of unstructured meshes (Maurizi et al. [15]). Unlike traditional neural networks, GNNs are inherently 
independent of resolutions without imposing a predetermined tensor size as input. Instead, data 
structures are typically represented as a set of nodes and edges, where nodes denote entities, and edges 
describe relationships or connectivity between them. This intrinsic ability to handle unstructured meshes 
positions GNNs particularly well-suited for FEA applications. The crux of GNN operation lies in 
Message Passing (MP), a process where information is propagated and aggregated throughout the graph. 
This allows GNNs to effectively capture the intricate relationships and dynamic changes within the 
mesh. 

GNNs have found success across a myriad of applications, serving as the cornerstone for surrogate 
models in various domains. These applications range from urban wind field prediction (Shao et al. [16]), 
soft-tissue mechanics (Dalton et al. [17]), fracture and stress evolution modeling (Perera et al. [18]), and 
physical dynamics simulations (Lino et al. [19], Cao et al. [3]). These examples showcase the 
adaptability and efficacy of GNNs in diverse scenarios, reinforcing their role as a potent tool for 
processing complex, unstructured data representations. In the realm of stress analysis, graph-based 
frameworks have emerged to predict physical fields based on loading and boundary conditions (Gulakala 
et al. [6]), or to establish connections between material properties and physical responses (Maurizi et al. 
[15]). Nevertheless, current models often exhibit limitations in generalizability (Gulakala et al. [6]). The 
development of models capable of handling a broader spectrum of geometries, loads, and boundary 
conditions remains an active area of research. This necessitates the creation of more diverse datasets and 
the continued exploration of more generalizable surrogate models. 

3. Methodology 
This section details our proposed pipeline from synthesizing datasets to building surrogate models for 
predicting stress distribution in FEA simulations. Specifically, our focus lies on two-dimensional plates 
with holes exhibiting linear elastic behavior typical of common steel alloys. 

3.1. Data generation 
The publicly available SimuStruct dataset (Ribeiro et al. [20]) offers a valuable starting point, which 
consists of 1000 samples of plates with six circular holes under consistent loading and boundary 
conditions. However, this dataset is insufficient for training a GNN capable of predicting the structural 
behavior of plates across diverse geometric and mechanical configurations. To address this limitation, 
our pipeline starts by expanding upon the SimuStruct dataset significantly by creating a diverse 
collection of steel plates containing holes. These samples exhibit variations in the plate’s dimensions, 
holes’ number, sizes, and positions, as well as the external loads and boundary conditions applied. This 
parametric model is the foundation for generating mesh representations and training adaptable surrogate 
models. By adjusting the predefined values or generative ranges of parameters, the model can be 
seamlessly extended to encompass a broader range of geometries and conditions for future applications. 

3.1.1. Parametric modeling 
To diversify the dataset and capture a wide range of scenarios, we employed parametric modeling to 
generate a large number of synthetic two-dimensional plates with varying geometries, loading 
conditions, and boundary constraints. This approach allows us to systematically explore the design space 
and create a comprehensive dataset for training and evaluating our GNN-based surrogate model. 

Figure 1 illustrates the process of creating this synthetic dataset in Rhino and Grasshopper, with all steps 
being parametrically controlled: 

1) Starting from the shape of the rectangular plate, we incorporate holes of different sizes and 
randomly distributed placements.  

2) The input surface is discretized into an unstructured, triangular mesh with varying resolutions, 
with options for adaptive remeshing based on curvature and proximity to holes, ensuring an 
accurate representation of complex geometries. 

3) Boundary conditions are set as free or pinned, providing versatility in constraining the plate’s 
edges. 
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4) Loading conditions include axial and uniaxial loads, with magnitudes varying from 5 to 30 N/m. 
5) The material properties remain constant, representing a linear-elastic, isotropic material with a 

Young’s modulus of 210 GPa and a Poisson’s ratio of 0.3. While this simplification enables 
efficient exploration of geometric and mechanical variations, future work could incorporate 
different material properties to expand the dataset further. 

6) Steps 2–5 allow us to construct the FEA model using Karamba3D (Preisinger [21]) as the finite 
element solver. The model yields numerical solutions of von Mises stress fields within the 
plates. 

7) Finally, we exported geometric information, model details, and numerical results as CSV files 
for training and evaluation.  

 

Figure 1: Parametric pipeline for the synthetic dataset 

3.1.2. Data structure 
Our dataset comprises 29,000 samples of unique mesh configurations. For each configuration, we define: 

• H: Number of holes in the plate.  
• N: Number of vertices in the mesh. 
• C: Number of faces (namely, cells or elements) in the mesh. 

Each sample within the dataset corresponds to a specific mesh and mechanical configuration, and 
includes six key pieces of information, as shown in Figure 2: 

• Circular holes (shape: [H, 3]): This data describes the geometry of the holes in the plate using 
three values per hole (the 2D coordinates of the center and its radius).  

• Mesh geometry (shape: [N, 2]): This describes the 2D coordinates of each vertex in the mesh. 
• Mesh topology (shape: [C, 3]): This information defines the connectivity of the mesh by 

specifying the indices of vertices associated with each face. It can be used to derive the edges 
between vertices.  

• Boundary conditions (shape [N, 1]): This specifies the type of boundary conditions applied to 
each vertex. A value of 0 indicates a free vertex, and 1 signifies a pinned vertex.  

• External loads (shape: [N, 2]): This represents the external forces applied to each vertex in the 
x and y directions. Zero entries indicate no load. 

• von Mises stress (shape: [N, 1]): This represents the von Mises stress value calculated at each 
vertex in the mesh.  
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This comprehensive data structure enables the reconstruction of the mesh geometry and the visualization 
of the corresponding FEA simulation results. 

 

Figure 2: Data structure for each sample in the dataset 

3.2. Surrogate model 
Unstructured meshes can be naturally converted into graph representation, making graph neural 
networks a compelling solution for tackling FEA problems. The mesh data, including vertices and faces, 
can be effectively mapped onto a graph structure, with relevant attributes assigned to nodes, edges, and 
the entire graph itself. Our proposed surrogate model leverages MESHGRAPHNETS (Pfaff et al. [13], 
Kanfar [22]), a versatile GNN architecture specifically designed to handle unstructured mesh data. This 
architecture has demonstrated success in various physical systems simulated on meshes, ranging from 
structural mechanics over cloth simulations to fluid dynamics. 

3.2.1. Mesh-to-graph representation 
We represent the mesh domain as a computational graph denoted by G = (V, E), where V is a set of N 
nodes (vertices) connected through M edges (E). The raw mesh data is transformed into node attributes, 
edge attributes, node outputs (target labels for prediction), and visualization data. The features extracted 
from the dataset are as follows: 

• Node features (shape: [N, 5]): This combines geometric and mechanical information for each 
node, including its 2D coordinates, boundary condition, and the external load applied to it. 

• Edge index (shape: [2, M]): This captures the graph's connectivity by storing the indices of bi-
directional connected nodes for each edge within a matrix. 

• Edge attributes (shape: [M, 3]): This assigns a 2D vector for each edge, representing the 
direction from the start node to the end node, along with its vector norm. 

• Node output (shape: [N, 1]): This represents the von Mises stress value at each node, serving as 
the target label for the prediction model. 

While additional data, like information on cells and holes, is stored for visualization purposes, it is not 
directly involved in the embedding process or the training itself. 

3.2.2. GNN architecture 
As depicted in Figure 3, the surrogate model adopts the encode–process–decode paradigm used in 
MESHGRAPHNETS (Battaglia et al. [23], Pfaff et al. [13]). The encoding stage consists of separate node 
and edge encoders. These encoders employ a multilayer perceptron (MLP) to transform the raw input 
data (node features and edge attributes) into a format conducive to processing by GNNs. The processing 
stage is the model’s core and involves message passing, aggregation, and updating phases, wherein the 
encoded information is iteratively propagated through stacked MP layers. This process captures the 
intricate relationships and dependencies within the mesh data. Finally, the decoder takes the processed 
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information and translates it into the desired output – the predicted von Mises stress distribution across 
all mesh nodes. 

The building blocks of the encoder, processor, and decoder are ReLU-activated MLPs with two hidden 
layers. Both the number of processor layers and output size for these MLPs are set to 32, except for the 
decoder’s output layer, which is adjusted to match the dimension of prediction. All MLPs incorporate 
residual connections to mitigate the vanishing gradient problem, while all outputs (except the decoder’s). 
are normalized using LayerNorm. 

 

Figure 3: Schematics of the GNN-based surrogate model 

3.2.3. Performance evaluation 
We employ a comprehensive suite of metrics to evaluate the surrogate model’s effectiveness. During 
training, the root mean squared error (RMSE) serves as the loss function. This metric quantifies the 
average difference between the model’s predictions and the actual stress values obtained from the FEA 
simulations considered the ground truth. In our case, RMSE is defined as: 

 RMSE = &!
"
∑ (𝑠# − 𝑠̂#)$"
#%!  , (1) 

where 𝑠# denotes the actual stress value at node i (ground truth) computed by the FEA solver, 𝑠̂# is the 
corresponding predicted stress by the surrogate model, and n is the total number of nodes across all 
samples. 

For the test process, we utilize the R-square (R2) metric to assess the proportion of variance in the actual 
stress values that can be explained by the model’s predictions. R2 ranges from 0 to 1, with values closer 
to 1 indicating a better fit and stronger explanatory power. It is defined as: 

 R$ = 1 − ∑ ((!)(̂!)"#
!$%
∑ ((!)(̅)"#
!$%

 , (2) 

where 𝑠̅ is the average of the actual stress values (𝑠#) across all nodes. 

Furthermore, we leverage the cumulative distribution function (CDF) of prediction error percentage to 
gain deeper insights into the distribution of prediction errors across the test set. The error percentage 𝜀# 
at each node is calculated as: 

 𝜀# =
|(!)(̂!|
(!

× 100% (3) 

By analyzing this set of metrics (RMSE, R2, and CDF of error percentage), we obtain a clearer picture 
of the model’s accuracy and its ability to capture the underlying relationships within the stress 
distribution data. 
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4. Results 
The GNN experiments were implemented using PyTorch and PyG libraries on a Windows system 
equipped with an AMD Threadripper PRO 5975WX 32-Core processor, NVIDIA RTX A5000 GPU, 
and 256GB of RAM.  

To expedite the experimentation process, we partitioned a portion of the synthetic dataset into the 
training, validation, and test sets. The training set contained 23,000 samples, while the validation and 
test sets held 3,000 samples each. We employed the Adam optimizer to accelerate model convergence, 
with a cosine annealing scheduler for the learning rate (2.5´10-4). Hyperparameter tuning was performed 
but the model exhibited minimal sensitivity, culminating in the best validation RMSE of 0.04615 (Figure 
4). Subsequently, the trained model was evaluated on unseen data from the test set to assess its 
generalization capability. 

Figure 5 presents a selection of predicted stress fields alongside their corresponding ground truth values 
from the test set. The error at each node is visualized using a color scheme: red indicates positive errors 
(predicted higher than the actual stress), and blue signifies negative errors. This allows for a quick visual 
assessment of the model’s prediction accuracy across different mesh configurations. 

 

Figure 4: Losses plot of the training process 

 

Figure 5: Predicted stress fields, ground truths, and errors of test samples 
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As further evidence of the model’s performance, Figure 6 combines a 45° regression plot (indicating a 
strong correlation between predicted and actual stress values) with the distribution of stress values from 
the test set. This plot reveals an R-squared score of 0.997 and an RMSE of 0.05683. Furthermore, Figure 
7 showcases the CDF of the error percentage, highlighting that 95% of the predictions fall within a 
narrow band of 4.5% error. 

To assess computational efficiency, we compared the execution times of both methods on a Windows 
system with an Intel Xeon Gold 5412U processor and 32GB RAM. For a fair benchmark, both the 
surrogate model and FEA solver relied solely on CPU computation for all test cases. The surrogate 
model demonstrably outperformed the FEA solver in speed, averaging only 48 milliseconds per 
prediction, while Karamba3D required an average of 84 milliseconds. In practice, this efficiency gap is 
expected to widen even further when leveraging the power of GPUs for computation. 

  

Figure 6: 45° regression plot of stress prediction                     Figure 7: CDF of prediction error percentage 

5. Discussion 
The proposed GNN-based surrogate model achieves commendable performance, exhibiting a robust fit 
and remarkable generalizability across diverse mesh resolutions, plate dimensions, hole arrangements, 
and mechanical conditions. The high R-squared score and low RMSE (Figure 6) collectively indicate its 
high accuracy and low average error. The CDF of prediction error percentage (Figure 7) underscores the 
model’s reliability in approximating stress fields. These results showcase the efficacy of our model in 
capturing the complexities of stress distribution within thin plates with holes. The observed speed 
advantage of the model stems from its generic architecture and reduced computational requirements 
compared to traditional FEA solvers, which need to solve complex partial differential equations. 
Notably, this superiority is likely to become even more pronounced when dealing with increasingly 
intricate conditions. 

While the model exhibits strong overall performance, a closer examination of Figure 6 reveals a 
concentration of outliers with larger errors at both ends of the stress spectrum. Specifically, the model’s 
accuracy decreases in regions experiencing exceptionally high or low stress values compared to the 
intermediate range. This phenomenon can be attributed to two key factors. Firstly, the inherent bias 
within the synthetic dataset skews towards extreme values, leading the model to prioritize learning mid-
range patterns during the training process. Secondly, the application of graph convolution via stacked 
MPs might contribute to over-smoothing (Cao et al. [3]). Consequently, the model’s predictive accuracy 
in regions with either very low or very high stress is compromised. It is crucial to acknowledge that 
these areas with extreme values often hold heightened significance in practical engineering applications 
and are thus expected to be predicted with higher accuracy. For example, pinpointing areas of peak stress 
concentration is paramount for evaluating structural integrity.  
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6. Conclusion 
This study demonstrates the effectiveness of using a mesh-to-graph representation coupled with a graph 
neural network for predicting stress distribution in thin plates. The GNN architecture, leveraging the 
power of graph convolution and message passing, can effectively capture the relationship among 
structural and geometric information encoded within unstructured meshes, enabling accurate stress 
prediction. 

Our approach begins with an extendable pipeline for dataset generation. This framework allows for the 
creation of comprehensive datasets featuring diverse geometries, boundary conditions, and external 
loads, all derived from parametric modeling and FEA. Additionally, we introduce a customized 
MESHGRAPHNETS model tailored for stress distribution prediction and validate its generalizability in 
accommodating various shapes, mesh resolutions, and mechanical configurations. Notably, the superior 
speed of our model makes it suitable for real-time applications demanding rapid responses. 

However, this research also identifies a key limitation concerning stress prediction in regions with 
extreme values. Larger errors were observed in these areas, impeding the model’s ability to predict stress 
in critical locations reliably. While the surrogate model performs well for moderate values, future efforts 
should focus on enhancing its sensitivity to extreme stress conditions. 

Potential avenues for improvement include implementing data augmentation techniques such as 
oversampling or undersampling, engineering cost functions to prioritize accurate predictions in extreme 
stress regions, and exploring alternative GNN architectures. Utilizing graph attention networks or 
multiscale GNNs shows promise in facilitating more accurate and informative message passing within 
the graph. By addressing these nuances, the surrogate model can be refined to provide more dependable 
predictions across the entire stress spectrum, ultimately leading to its wider adoption in real-world 
engineering scenarios. 
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