
Proceedings of the IASS 2024 Symposium  
Redefining the Art of Structural Design 

August 26-30, 2024, Zurich Switzerland 
Philippe Block, Giulia Boller, Catherine DeWolf,  

Jacqueline Pauli, Walter Kaufmann (eds.) 
 
 

 
 
Copyright © 2024 by <name(s) of the author(s) as listed above> 
Published by the International Association for Shell and Spatial Structures (IASS) with permission. 
 

Enhancing Spatial Truss Designs by Integrating Metaheuristic 
Optimization Techniques via Visual Programming in BIM-based 

Projects 
Feyzullah YAVAN, Reza MAALEK*, Shahrokh MAALEKa 

*Department of Digital Engineering and Construction, Karlsruhe Institute of Technology (KIT) 
Bldg. 50.31, Am Fasanengarten, 76131, Karlsruhe, BW, Germany 

Email: reza.maalek@kit.edu 
 

a Digital Innovation in Construction Engineering (DICE) Technologies 

Abstract 
Creating sustainable, affordable, and nature-friendly designs is crucial to address many of the 
construction demands in contemporary societies. The advent of new digital technologies, including 
artificial intelligence (AI)-based metaheuristic optimization tools, have enabled the selection of optimal 
designs to achieve a fair balance between all factors that can predict project success. To this end, this 
study proposes a workflow for optimizing existing spatial trusses by integrating visual programming 
(VP), numerical structural analysis, and metaheuristic biologically/nature-inspired AI optimization 
methods. The methodology encompasses several steps including: (i) creating parametric trusses using 
VP from available digital designs in Dynamo; (ii) performing structural analysis using the finite element 
method (FEM) in Robot Structural Analysis (RSA) software; and (iii) generating new trusses using 
metaheuristic algorithms (MA). The effectiveness of the framework for truss optimization was validated 
on established benchmark problems, including a 2D 10-bar truss and a 3D 120-bar dome truss. The 
results for each benchmark problem were reported and compared using the following configurations: (i) 
two different MAs, namely, the Genetic Algorithm (GA) and Particle Swarm Optimization (PSO); and 
(ii) two different constraint handling techniques (CHT), namely the penalty function method and the 
separation technique. It was revealed that the GA combined with the penalty method yielded the best 
results. The results also showed that it was possible to achieve results (on average for both trusses) 
within 12% of the best reported in the considered literature with over an order of magnitude less function 
evaluations.  

Keywords: Structural Optimization, AI in Construction, Generative Modeling, Parametric Design, Visual Programming 

1. Introduction 
Conventional engineering design workflows in the Architecture, Engineering, and Construction (AEC) 
industry, particularly in the context of the design-bid-build delivery strategy, is divided between 
architects and engineers, increasing the possibility of miscommunication, and hindering seamless 
wholistic optimal engineering design solutions. This is since the roles of architectural and engineering 
firms in the divided AEC sector are inherently separated. On the one hand, structural optimization (SO) 
is a natural step in the engineering process to minimize the use of resources/materials, reduce cost, and 
satisfy desired design constraints [1]. On the other hand, the traditional role of architects focuses on 
aesthetics, space management, and satisfying end-user (occupant) requirements. While parametric 
modeling is increasingly used by architectural firms to increase design flexibility, the models are 
typically not shared with the engineering team, and consequentially not used for engineering analysis 
and optimization [2]. This is in part due to the lack of interoperability between structural analysis and 



Proceedings of the IASS Symposium 2024 
Redefining the Art of Structural Design 

 

 

 2 

 

parametric visual programming tools. Particularly in the absence of an interoperable platform for sharing 
data between different project proponents, such as the common data environments (CDE) in building 
information modeling (BIM) projects, the information modeled by the architects cannot be utilized in 
its fullest potential by the engineering team, which may result in rework during the design and modeling 
stages of the project. Developing an interoperable CDE to connect the engineering analysis software 
with parametric models, however, requires considerable technical knowledge and skill from the 
engineering team [3].  

To allow for a seamless transition between parametric models generated by the architectural teams and 
structural analysis together with optimization by the engineering team, this study proposes a generic and 
user-friendly framework to not only link the information between the engineering and the architectural 
teams, but also incorporate advanced artificial intelligence (AI)-based metaheuristic algorithms (MA) to 
generate wholistic optimal solutions based on stakeholder requirements. The advancements in AI-based 
optimization, particularly in multi-object and many-objective optimization strategies -with conflicting 
interests-, have shown effective in solving complex engineering problems [4]. The integration of Visual 
Programming, finite element modeling (FEM), and AI-based optimization within one framework can 
support the simultaneous optimization of architectural and engineering requirements while minimizing 
design rework in BIM-based projects. This interoperability can not only reduce rework during the 
engineering design stage, but also provide designs that support local resource constraints to achieve a 
fair balance between various requirements, such as cost, time, and sustainability [5]. Given the inherent 
importance of reducing the embodied CO2 and energy emissions as pillars to support the United Nation’s 
(UN) Sustainable Development Goals (SDG) [6], the optimized structure can be configured to enable 
further analyses and simulations, such as life cycle analysis (LCA) and cost estimation through quantity 
surveying as illustrated in [7]. 

Many existing studies have demonstrated the effectiveness of MAs in SO problems; however, the studies 
commonly developed code from scratch, and not within design software packages used by architects 
and engineers in the industry. This approach may not be suited for the large-scale adoption of these 
optimization methods by the AEC industry, as it requires a high level of technology literacy. To support 
the AEC industry with an approach that can be easily integrated into their existing supply-chain 
processes, the referenced research [7] concentrated on devising a workflow by combining Revit-
Dynamo with RSA to establish a reliable, streamlined, and intuitive setting for SO where MA methods 
can be readily implemented. In this article, the proposed workflow in [7] is enhanced by employing the 
RSA-API (Application Programming Interface) to speed up the process and leverage the features of 
RSA without relying on additional third-party packages. The suggested framework's applicability was 
validated on two truss benchmark problems, commonly used in open literature. Two distinct constraint 
handling techniques (CHT), namely the penalty function method and the separation technique, along 
with two different MAs, namely the genetic algorithm (GA) and particle swarm optimization (PSO), 
were also used during the validation process. 

2. Background 
The aim of SO is to find the best design among various possible choices while satisfying problem-
specific constraints. Given the inherent complexity in structural design problems, AI-based MA 
strategies, such as GA, must be commonly employed to provide a close to optimal solution. Simulated 
annealing (SA), proposed by Kirkpatrick et al. [8], was one of the first examples of such algorithms that 
mimic physics by formulating temperature change of metals. In the early 90s, Holland [9], inspired from 
the theory of evolution, developed the GA. Further developments by Dorigo et al. [10] and Kennedy et 
al. [11] paved the path to the inception of well-known algorithms, including ant colony optimization 
(ACO), which is inspired by the foraging behavior of ants; and PSO, which mimics swarm behavior, 
respectively. The body of literature in MA is vast and the readers can refer to the referenced review 
articles [12], [13] for further information.  

On the other hand, researchers focused on employing MA for SO with the aim of achieving optimum 
performance from a structure while lowering costs and material usage. In that direction, Saka and Ulker 
[14] implemented GA into the optimization methodology and created an algorithm to optimize space 
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truss structures while taking into consideration of nonlinear behavior of structures. Rajeev and 
Krishnamoorthy [15] presented a methodology to transform constrained problems into unconstrained 
ones and used discrete sets of solutions for problems to show the efficiency of GAs in handling discrete 
variables. Groenwold et al. [16] also used discrete optimization and added slenderness and buckling to 
the design problems and solved them with GA. In the article presented by Goodarzimehr et al. [17], 
scholars introduced a new smart algorithm known as the Bonobo Optimizer (BO) algorithm to optimize 
the sizing of truss structures, accommodating both discrete and continuous variables. The algorithm is 
mimicking primates’ behavior, such as fission-fusion strategy and mating behaviors, to optimize the 
cross-sectional areas of truss elements. Their approach was formulated in MATLAB and the truss 
structures are analyzed using the direct stiffness method. Aydın [18] employed the Jaya algorithm with 
the objective to minimize the costs while increasing material efficiency on the prestressed structures. 
The optimization focused on the size of structural elements, including prestressed elements’ size, based 
on different prestress loss conditions by considering both slenderness and displacement constraints. The 
study calculates the penalized objective function by using the equation proposed by Rajeev and 
Krishnamoorthy [15] which is one of the most successful formulations for the penalization process as 
stated by Aydın [18]. All steps of the design process and optimization were performed on the coded 
software. Singh et al. [19] provided an improved version of the follow the leader (iFTL) method, which 
mimics the behavioral movement of a sheep within the flock, to solve a variety of challenging 
optimization and truss design problems. The manuscript by [20] demonstrated the efficiency of artificial 
bee colony (ABC) algorithm by optimizing the layout and member sizes of truss structures, which was 
the first application of ABC to solve size and shape optimization simultaneously. The scholars have also 
created hybrid algorithms to increase MAs’ performance. In this line, Jafari et al. [21] proposed a new 
combination of the culture algorithm (CA) together with the PSO, referred to as the particle swarm 
optimizer cultural (PSOC) method for SO problems with promising results. However, there was a need 
for the integration of AI-based optimization with visual programming (VP) in Building Information 
Modeling (BIM) projects to create a user-friendly, interoperable framework, suitable for low technology 
literacy and programming skills that enhances structural efficiency and sustainability. A workflow to 
bridge the latter gap by integrating RSA-API to accelerate the structural analysis and optimization 
processes was proposed in [7]. This study builds on the findings of [7] by comparing the impact of 
different AI-based optimizations, along with the choice of constraints on the results of the structural 
optimization. In the following, the two main MAs used in this study, namely the GA and PSO, were 
explained in more detail.  

2.1. Genetic Algorithm 
GA integrates evolutionary operators into the algorithm by mimicking the evolutionary theory to create 
a robust search mechanism [15]. GA is a mixture of Darwin's theory with a structured yet random 
technique of exchanging information that results in a systematic search strategy that can be used to find 
near optimal solutions to a variety of problems [22]. GA is simple to implement, due to their evolutionary 
basis are flexible to dynamic or changing environments by design, rendering them useful in a variety of 
disciplines, including engineering, economics, and biology [22]. GA can integrate various evolutionary 
operators, such as reproduction, deletion, dominance, crossover, duplication, mutation, inversion, 
migration, etc., depending on the optimization problem. Based on the specific problem at hand, GAs 
have the potential to be enhanced by increasing the number of operators [15]. In the present study, a 
simple GA is utilized that employs the reproduction, mutation, and crossover operators since these 
operators have been shown to be sufficient in solving the popular combinatorial knapsack problem. The 
knapsack problem resembles the combinatorial sizing optimization problem considered in this study. In 
terms of implementation, the PyMoo library [23] was utilized inside the Python environment. 

2.2. Particle Swarm Algorithm 
As an alternative for GA, another nature-inspired stochastic optimization technique that mimics the 
social behavior of birds or fish groups is called the PSO algorithm. In PSO, individuals with the potential 
best solution share their information with other individuals and that information are constantly updated 
by the group members to reach the best result [24],[25]. The algorithm is known for its simplicity, user-
friendly deployment, and efficient convergence; thus, it has been implemented in various fields, such as 
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engineering, economics, and bioinformatics [26]. In terms of implementation, this study used the PSO 
through the PyMoo library to provide alternative results to GA and compare them on benchmark SO 
problems. Further documentation about utilized library and operators can be found in [27]. 

2.3. Formulation of the truss optimization problem 
In SO problems, the commonly used objective function is to minimize structural weight, while satisfying 
desired constraints [28],[29] as shown as follows: 

 𝑚𝑖𝑛 𝑓(𝑥) =) *𝜌!𝐴!𝑙!.
"

#$%
, (1) 

where, 𝜌, 𝐴, and 𝑙 are accordingly the density of the material, cross-sectional area of the member, and 
the length of the member. The constraints, including the allowable member stress as well as 
displacement, adopted from [15], are as follows:   

 ℊi(𝑥)	= 𝝈𝒋	
𝝈𝒂
	-1 ≤	0,         ℊi(𝑥)	= 𝒖𝒋	

𝒖𝒂
	-1	≤	0, (2) 

where 𝜎! and 𝜎) are represent the stress value on the element and the allowable stress respectively. 
Similarly, 𝑢! and 𝑢) denote the displacement at the nodes and the allowable displacement. Given the 
non-linearity of the problem and the relationship between the constraints and the objective function, 
many CHTs have been developed over the past several decades [30] to solve the SO problem. Four 
categories have been created to group the most common CHTs [31] as follows:  

1. Penalty-based approaches [30], [32], [33]; include strategies, such as the death penalty, static 
penalty, dynamic penalty, adaptive penalty, exact penalty, and the self-adaptive fitness 
formulation. 

2. Separation of objective and constraints [30], [34], [35]; include the Adaptive constraint-handling 
technique (ACT), ε-constrained method, Constraint violation with interval arithmetic (CVI), etc. 

3. Retaining the infeasible solutions in the population [31].    
4. Hybrid techniques [30], [31]; Push and pull search, two stage framework, etc. 

It should be noted that there are also alternative classification methodologies for CHTs. Among them, 
the fundamental and most popular CHT is the objective function penalization [30]. In this study, the first 
two CHTs, namely penalty-based through objective function penalization, and separation-based through 
the ε-constrained method were used. 

3. Methodology 
The methodology is structured around the following steps: 

1. Generate parametric trusses by employing VP (Figure 1a); 
2. Conduct structural analysis on RSA by employing RSA-API and obtain results (Figure 1b); 
3. Evaluate the analysis results to rank created structures. (Figure 1c); 
4. Create new populations by utilizing MAs and repeat previous steps until the stopping criteria is 

fulfilled. (Figure 1d). 

3.1. Parametric Model Creation 
Parametric modeling is a design strategy that focuses on developing flexible solutions that can respond 
to changing conditions or requirements. It is a process that enables alterations to model geometry and 
other features by only adjusting the inputs of the model. This makes it very straightforward and 
appropriate when combined with VP for inexperienced users with low technology literacy as it does not 
require substantial syntactic understanding. In Figure 1a, several attributes, such as truss height and 
length, number of bracings, etc., are specified using a number-integer slider or code block nodes as 
inputs or design decision variables. The optimization process then involves finding the best combination 
of the decision variables that minimize the objective function.   
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(a) 

  
(b) 

  
(c) (d) 

Figure 1. Schematic representation of the proposed methodology; (a) Parametric modeling of 120-bar truss; (b) 
Performing structural analysis through API and a small section of the utilized code; (c) Calculating weight score 

using Penalty method; (c) Employing an MAs and CHT through Python libraries 

3.2. Perform Calculation and Retrieve Results through RSA-API 
An integral part of the workflow for SO is conducting structural analysis. In the present investigation, 
an integration between Dynamo and RSA was formed via the API, allowing for the development of 
models and the allocation of parameters, such as materials, loads, and sections on RSA, depending on 
Dynamo inputs. To generate the structure on RSA, the members (lines) formed in the prior step are 
required to associate with the Python code that contains API demonstrated in Figure 1b. Following the 
generation of the bars, cross-sections and connection details must be assigned, along with the definition 
of support location and type, load type and magnitude, and analysis type. The API conducts the analysis, 
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saves the model at a designated location (Figure 1b), and then retrieves the stresses, structural weight, 
and displacements needed for calculating the penalized objective function from RSA. To rank the design 
options, two different methods, namely penalty and separation based, from the open literature are 
obtained. Assessing the penalized objective function of every design solution is essential to rank them 
in SO while using penalty-based CHT. For this process formulations in [15] have been utilized as 
demonstrated in Figure 1c. It is also possible to use other techniques such as techniques based on the 
separation of objective and constraints as has been shown in Figure 1d. These methods are tested on the 
10-bar truss to see their effectiveness in the result section. After obtaining the comparison chart, the 
method that gives better results is utilized to optimize more complex 120-bar truss structure. As can be 
seen in Figure 1d, Dynamo allows employing Python script in the VP environment. Thus, explained 
processes are carried out in the VP environment using Python scripts. More detailed information and 
scripts about the process can be found on the referenced GitHub location [36]. 

3.3. Structural Optimization 
For SO, all parameters defined in VP and TP can be used as design variables in the proposed method. 
The present study has focused on size optimization, consequently, section indices have been set as a 
design parameter. Given the non-linear nature of the sizing combinatorial optimization problem, PSO 
and GA have been utilized as shown in Figure 1d. 

4. Results 
This study was validated by examining two distinct benchmark problems. The first one is the 10-bar 
truss example is an established benchmark problem in the subject of SO [15], [16], [37]. The geometry 
configuration and boundary conditions for this 2D truss are shown in Figure 2a, originated from the 
referenced paper [15]. A list of 41 element sections, commonly utilized in practice, has been considered 
as design decision variables to enhance the adaptability of the proposed workflow for practical scenarios. 
This list was obtained from the American Institute of Steel Construction (AISC) and inserted into RSA. 
The HSRO (Hollow Structural Round Sections) family was employed regarding optimization. For 
comprehensive instructions on importing databases and utilizing various section features, the reader is 
encouraged to review article [38].  

  
(a) (b) 

Figure 2. Trusses for numerical examination (a) 10-bar truss; (b) 120-bar truss loading condition 

The last numerical example is the 120-bar dome truss which, was initially addressed by the referenced 
study [14] and later adopted by various studies to evaluate their methodologies [14], [39], [40]. The 
configuration, and limitations of this dome are depicted in Figure 2b, have been derived from the 
referenced manuscript [14]. The BS EN 10219-2:2006 standard was used to choose 27 CHS (Circular 
Hollow Section) sections that meet the specified limits and are available in real-world data. In addition, 
the buckling effect for components in compression has been considered. To compute the critic load for 
buckling, a Python algorithm was constructed using formulations from AISC [41]. Population size and 
generation number have been determined as 20 through the execution of 5 distinct run cycle for this 
example. The first part of optimization consists of optimizing the 10-bar truss with two different CHTs 
and MAs. Population size and generation number have been determined as 20 through the execution of 



Proceedings of the IASS Symposium 2024 
Redefining the Art of Structural Design 

 

 

 7 

 

5 distinct run cycle for each MA and CHT techniques. According to the results presented in Figure 3, 
GA with penalty method as CHT yields better performance. Herewith, for the 120-bar truss, this method 
has been utilized.  

 
Figure 3. Box chart comparison of 10-bar truss 

Ultimately, the results after SO with the proposed method are demonstrated and compared in Table 1. 
with the manuscripts taken from the literature. In addition to the table, the fitness score change chart and 
the final version of the best results with sections found have been presented in Figure 4. 

Table 1. Comparison of numerical results 

 10-Bar Truss 120-Bar Truss 

 Rajeev et 
al. [15] 

Camp et 
al.[37] 

Jafari et 
al. [21] 

This 
Study 

Saka et 
al. [14] 

Ebenau 
et al. [39] 

Kooshkbaghi 
et al. [40] 

This 
Study 

Weight (kg) 2549.2 2490.6 2302.43 2728.5 7587 6923.3 9101.3 8054.4 
Analysis made 400 10000 15100 400 - 20000 8400 400 
Separate Runs - 24 30 20 15 100 10 5 

 
 

  
(a)  (b) 

Figure 4. The final version of the trusses along with fitness score change by generation: (a) 10-bar truss; (b) 120-
bar truss  

4. Conclusion and Discussion 
Despite being a well-known topic, SO with meta-heuristic algorithms is not frequently utilized or applied 
to real-world projects. Here, this problem is approached by using technological advancements, such as 
Parametric design, and VP in BIM-based projects through Dynamo’s ability to become an interoperable 
bridge between RSA and BIM during the optimization process. Results reveal that the weight obtained 
after optimization is slightly lower than previous study [7] but still higher than benchmark studies. This 
is because: (i) discrete and real-world cross-sections selected as design variables, in contrast to the 
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benchmark problems; (ii) the benchmark studies involved significant amount of more analyses than the 
present study. Nevertheless, this study was able to achieve within 12% of the best results achieved in 
both benchmark trusses -on average- with over an order of magnitude less function evaluations and it is 
considered enough to prove the applicability of proposed workflow. 

For future deployments, several enhancements can be made on the study. The main problem is the time 
required for creating the geometry from the Dynamo plugin directly on RSA for structural analysis. 
Using the RSA-API significantly reduced the time from 8 hours (for more details, refer to [7]) to 45 
minutes per 400 analyses while optimizing the 10-bar truss; however, conducting one analysis for the 
120-bar problem with the API still took about 50 seconds. Multi operation techniques can be employed 
to speed up the process of model creation on RSA using additional API. This will allow the designer to 
perform more analysis within a shorter time frame, which is expected to improve the results. Moreover, 
frame structures are not included in this study. Performing SO with different types of optimization 
techniques (size, shape, topology, layout optimization etc.) on space frames along with multiple types 
of materials can expand the potential of the proposed workflow.  

Overall, the outcomes demonstrated the potential of modern technologies, making it possible for 
scholars to incorporate programming into their projects by removing the need for a significant amount 
of syntax knowledge.  
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