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Abstract

Because gridshell roofing design may be used to build large, lightweight roofs with slender primary
structural parts, in today’s engineering and architecture, they are appearing increasingly frequently.
However, their extended use outside of the most expensive and emblematic buildings or belonging to
great architecture has been limited by their difficulty in realization and expensive in production phase.
Since the stress state and structural form of gridshells are closely related, it is important to choose the
optimal design configuration to reduce internal stresses. Multi-body Rope Approach (MRA) computing
d’Alembert’s principle guaranteed equilibrium for every node of a funicular system in a dynamic model
of falling bodies over sequential steps in the time domain, returning a final funicular configuration. Dif-
ferent MRA improving methodologies are proposed in this paper: Repulsive Nodes MRA (RN-MRA)
and Multiple Order MRA (MO-MRA). By combining these methods, an enhanced MRA (i-MRA) is
created that significantly reduces the variety of structural components needed for gridshell fabrication.
Furthermore, the suggested approach provides lower manufacturing costs and improves building stage
management efficiency. Finally, by putting the i-MRA to use in Matlab and evaluating it in a case study,
its efficacy was confirmed.

Keywords: Gridshell, Multi-body Rope Approach, Structural Efficiency, optimization, Improved MRA, Form-
finding)

1. Introduction: Multi-body Rope Approach
In recent years, advancements in digital design and fabrication technologies have expanded the possi-
bilities for gridshells design and construction. These structures, constituted by materials like steel (e.g.,
[1]), aluminium (e.g., [2]), wood (e.g., [3, 4, 5, 6]), and elastic composite materials (e.g., [7, 8, 9]),
have seen increased use. However, their construction still faces challenges due to geometric complexity
and building phases (e.g., [10]). Nonetheless, improvements in computing systems have enhanced the
ability to analyze and compute complex systems (e.g., [11]). Consequently, it is possible to anticipate
continued growth in the utilization of gridshells for designing and constructing large, open structures in
the coming years. For these structures, the force density method is one of the most widely used form-
finding techniques [12] together with the thrust network analysis [13], the dynamic relaxation method
[14], the particle-spring system [15], the multi-body rope approach [16, 17, 18], and others [19, 20].
A cutting-edge development in structural design research is the combination of free shapes and free-
form structures with structural optimization. The necessity to reduce the number of different element
types in gridshell construction is equally a topical issue[21, 22, 23]. Determining a structural model
that is both geometrically and structurally optimal is substantially difficult. This work presents a novel
improvement in form-finding techniques designed especially for gridshells: the improved Multi-body
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Rope Method (i-MRA). The i-MRA method built upon the Multi-body Rope Approach (MRA) [16], is
a form-finding method used in structural engineering to maximize the number of parts of identical length
while designing complex and free-form gridshells.

The Multibody Rope Approach (MRA), developed by Manuello [16] and originally presented in 2004,
presents a novel method for producing gridshell structures even with complex geometries and varying
forming loads reducing the number of unequal elements as much as possible. This technique is de-
signed for gridshell buildings that use standardized building materials and free-form designs. MRA
uses a dynamic model that represents falling bodies in both space and time. D’Alembert’s principle
is employed to define the most reliable setup for every node repeatedly. This method presentation of
structural components as useful ropes joining masses to nodes is one of its distinguishing features. The
goal is to produce a geometry with the maximum number of components of the same length and the
best structural performance. The final equilibrium configuration is a funicular configuration, which is
an inverted depiction of the hanging net. MRA makes the same assumption as particle-spring models:
that rope loads and nodes self-weight are localized at the nodes. However, MRA departs from previous
approaches by modelling the hanging network with ropes and adding a certain slack coefficient to handle
regular shapes. The forces operating on individual nodes in MRA are not the same as those in dynamic
relaxation (DR) and spring-particle (SP) techniques. Interestingly, the rope element exerts pulls on the
masses to keep them from travelling farther than the given distance a distance that exactly matches the
rope length (lrope). The forces F applied to the end nodes may be expressed as follows defining l as the
distance between the rope two ends and k as the rope axial stiffness:{

Frope = 0 if l < lrope

Frope = k(l − lrope) if l ≥ lrope
(1)

In general, the goal of the method is to find a geometric configuration that ensures that the nodes remain
in balance both from external forces and those generated by the ropes that connect them. Let’s examine
a typical node i with a mass of mi within the network of nodes and ropes. Node i is linked to a quantity
ni of other nodes through ropes. If there exists an external load pi applied to node i, the equilibrium
equation can be formulated as:

R⃗i = p⃗i +

ni∑
j=1

F⃗rope,ji + F⃗ I
i + F⃗ II

i = 0 (2)

The force on node i in this equation is represented by the vector R⃗i, which consists of many forces:
the external load pi, the forces that the ropes transfer F⃗ rope, ji, the inertial force F⃗ II

i , and the damping
force F⃗ I

i . The node mass mi and the acceleration vector magnitude a⃗i are multiplied to determine the
magnitude of the inertial force F⃗ II

i , with the inertial force direction being opposite to that of the node
acceleration. A constant damping coefficient ci and the velocity vector v⃗i are multiplied to find the
damping force F⃗ I

i , which is oriented in the opposite direction of the velocity vector. By representing the
position of the generic node i as u⃗i = (xi, yi, zi), it is possible to derive the velocity and acceleration by
differentiating the position with respect to time, as outlined in equations (3).

v⃗i = ˙⃗ui = (ẋi, ẏi, żi) a⃗i = ¨⃗ui = (ẍi, ÿi, z̈i) (3)

Therefore, equation (2) can be reformulated as shown in (4).
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R⃗i = p⃗i +

ni∑
j=1

{
k · F⃗rope,ji

}
− ci · v⃗i −mi · a⃗i = 0 (4)

A time step of ∆t is taken into consideration in order to solve the system of equations. With initial
velocities and accelerations set to zero for each node i (vi(0) = 0 and ai(0) = 0), the locations of the
nodes at time t = 0 are taken to be known. Each node location, velocity, and acceleration at time t

may be used to calculate these values at the following time step, t +∆t. Equation (5) illustrates how a
coefficient C3 is defined as a function of the known node locations at time t∗ in order to achieve this.

C3 = p⃗i +

ni∑
j=1

{
k · F⃗rope,ji

}
(5)

The coefficient C3 relies entirely on the node positions at time t∗, and it determines the vector Frope.
Thus, Equation (4) can be revised as depicted in (6).

¨⃗u+
c

m
˙⃗u = C3 (6)

Furthermore, the natural frequency of the system ωn and the critical damping ζ can be characterized by
equations (7) and (8) respectively.

ωn =

√
k

m
(7)

ζ =
c

2ωnm
(8)

The external force term Ftext(t) makes this second-order differential equation non-homogeneous. The
stiffness, mass, and damping coefficient of the system are denoted by the constants k, m, and c, respec-
tively. The frequency at which the system oscillates in the absence of outside influences is known as
the natural frequency, or ωn. Conversely, the damping coefficient that causes the system to be critically
damped—that is, to return as quickly as feasible to its equilibrium state without oscillating—is known
as the critical damping ζ.

¨⃗u+ 2ωnζ ˙⃗u = C3 (9)

The solution to equation (9) can be derived by combining the particular solution with the solution to the
corresponding homogeneous differential equation, represented by (10).

u⃗(t) = C1e
−2ωnζ + C2 +

C3

2ωnζ
t (10)

The system starting conditions may be used to get the coefficients C1 and C2. In this case, The positions
and velocities of the nodes at the time step may be used to compute them t−∆t that came right before,
as shown in the following equations:

C1 = −
2ωnζ ˙⃗u(t−∆t) − C3

(2ωnζ)2
(11)
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C2 = −
(2ωnζ)

2u⃗(t−∆t) + 2ωnζ ˙⃗u(t−∆t) − C3

(2ωnζ)2
(12)

The locations, velocities, and accelerations of the system nodes at the previous time instant in the so-
lution determine the values of the coefficients C1, C2, and C3. Gradually, the positions of the nodes at
each instant may be calculated, starting with the initial condition when the location of the node is known
and their acceleration and velocity are zero. By calculating the difference between the nodes locations
at instants t−∆t and t, and dividing by the time increment ∆t, one may derive the velocity vector ˙⃗ut:

˙⃗ut =
u⃗t − u⃗t−∆t

∆t
(13)

The ratio of the incremental change in velocity between two time instants may be calculated t−∆t and
t to find the acceleration ¨⃗ut. This entails calculating and dividing the velocity difference between these
two points in time by ∆t.

¨⃗ut =
˙⃗ut − ˙⃗ut−∆t

∆t
(14)

The proposed method aims at identifying the final shape of a gridshell starting from its original mesh,
which is the state of the net at the beginning (mesh on the flat). When the initial node positions are
known and taken to belonging to the z=0 plan, the following equations are used to compute the new
node locations, velocities, and accelerations in turn: (10), (13), and (14). This repeating approach is
performed p⃗ until the applied force field-given optimal structural geometry is reflected in an equilibrium
configuration. The final geometry is affected by nodal masses m, system stiffness k, damping parameters
c, rope slack coefficient ρ, and the applied force field p⃗. The slack coefficient ρ is defined as the ratio
between the desired length of the ropes (lrope) respect to the initial distance between the nodes, as
specified in the equation (15).

ρij =
lrope

|u⃗i(0)− u⃗j(0)|
(15)

Two enhanced variants of MRA, Repulsive Nodes MRA (RN-MRA) and Multiple Orders MRA (MO-
MRA), are presented in this study with the goal of lowering the quantity of ”loose elements” produced
by MRA. The loose elements are the ropes remained loose, not in tension after the form-finding. These
techniques can be used after MRA to improve the final arrangement, leading to a structure with fewer
parts of different lengths and making the assembly to be easier. The combination of these methods is
known as Improved MRA (i-MRA), which may produce structurally efficient and easily buildable and
constructible geometries by carefully choosing model parameters and target lengths.

2. Improved MRA: Multiple Orders and Repulsive nodes
The Multiple Order MRA (MO-MRA) technique aims to decrease the number of distinct structural ele-
ments obtained from traditional MRA. The structural layout derived from applying MRA typically con-
sists of structural elements of length lrope,1 along with additional ”loose elements.” MO-MRA involves
introducing new sets of ropes, each characterized by a length shorter than lrope,1.

For each iteration, the assignment of ropes to these sets is determined based on the distance between the
connected nodes. Once the geometric configuration is obtained using MRA, a new set of ropes with a
final length of lrope,2 < lrope,1 is added. In this scenario, the force F⃗ rope exerted by each rope depends on
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its assigned set, which is determined by the distance between the connected nodes. Specifically, F⃗ rope
can be computed as described in equation (16).

Frope = 0 if l < lrope,2

Frope = k(l − lrope,2) if lrope,2 < l ≤ γ(lrope,1 − lrope,2) + lrope,2

Frope = 0 if γ(lrope,1 − lrope,2) + lrope,2 < l < lrope,1

Frope = k(l − lrope,1) if l ≥ lrope,1

(16)

The resulting equilibrium configuration is iteratively determined using equations (10), (13), and (14),
resulting in a new structural arrangement. In this updated setup, structural elements are categorized into
three groups: those with target lengths lrope,1 and lrope,2, and possibly a third group comprising ”loose
elements.”

Once more sets of ropes have been added, the repetition of this procedure should be performed until all
structural components have been classified into distinct groups. By combining structural elements of
comparable lengths, this technique expedites the building of gridshells and facilitates mass manufactur-
ing while streamlining on-site strategy.

MO-MRA provides users with the flexibility to adjust parameters such as the coefficient γ and rope
lengths (lrope,2, lrope,3, etc.) to customize the structural geometry to suit their design requirements. These
parameters are customizable and enable optimization of the structural design to meet specific construc-
tion or manufacturing limitations. For example, while lrope,1 may dictate the structure height, it could
lead to material waste when cutting steel billets of fixed length. Thus, adjusting the lengths of other
structural element families can help minimize waste.

Similarly, the coefficient γ determines the allocation of slack ropes, remaining after MRA application, to
different structural element families. Configuring both γ and the target lengths for each family is crucial
in defining the final structural geometry, which can vary widely based on project-specific requirements.

The Repulsive Nodes MRA is devised to decrease the number of ”loose elements” produced by applying
basic MRA. The fundamental concept involves introducing a repulsive force field q⃗ among the nodes of
the geometric configuration obtained through MRA. This force field q⃗ is implemented after establishing
the final equilibrium configuration using MRA, necessitating a new iterative computation process to
determine the updated equilibrium condition.

Until the ropes are tensioned, repulsion will occur because the repulsive forces operate on the ends of
each slack rope, causing the linked nodes to move apart as if they were electrically charged with the same
polarity. Therefore, for every node linked by a loose rope, Equation (4) must be adjusted to incorporate
the repulsive force field q⃗. Consequently, a new system of equations is derived, where Equation (4)
remains applicable for nodes linked by tensioned ropes, and Equation (17) is introduced for each node i

connected to slack rope.

R⃗i = p⃗i + q⃗i +

ni∑
j=1

{
k · F⃗rope,ji

}
− ci · v⃗i −mi · a⃗i = 0 (17)

Equation (17) introduces a repulsive force field q⃗ to each node i connected by slack ropes. This force, q⃗,
is directly proportional to the disparity between the target length lrope and the distance lij between nodes
linked by a slack rope. To compute the repulsive force field q⃗, Equation (18) can be applied, with krep

representing the constant of proportionality relating the magnitude of the repulsive force to the distance
between nodes i and j.
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qi = −krep(lrope − lij) (18)

The choice of elastic coefficients k and krep depends on various factors. For instance, k should be
determined based on rope length, applied loads, nodal masses, and the time interval ∆t for each iteration.
It needs to be sufficiently large to prevent the presence of ”over elements” yet not too large to ensure
system convergence. In the reported application cases, a k value of 1.2,MN/m with ∆t = 0.005, s was
utilized, serving as a starting point for different scenarios. The procedure involves increasing k until
no more ”over elements” are present in the final configuration and adjusting ∆t if the system fails to
converge. Similarly, krep should be chosen to prevent repulsive forces between nodes from generating
”over elements” in the final geometric configuration. In the presented case studies, a krep of 2, kN/m
was employed, serving as an initial value for other applications. Therefore, it is advisable to apply
RN-MRA judiciously, making minor adjustments to the geometry obtained from MO-MRA to strike a
balance between enhancing constructability and achieving the best structural geometry. Ideally, RN-
MRA should be used for models with few ”loose elements” relative to tensioned ones, and where their
length closely aligns with the target length lrope.

Two MRA breakthroughs that result in more beneficial structural solutions in terms of ease of construc-
tion are addressed in this Section. These methods are used in the i-MRA process to provide a geometry
that strikes the ideal mix of structural functionality and simplicity of assembly. In the first method, the
number of element families in the MO-MRA is increased until a configuration is reached where the ma-
jority of the ropes are in tension. The remaining loose parts are subsequently tensioned using the second
method, RN-MRA, to enhance the geometry. Because of this, the final form may not exactly match the
geometry produced by MO-MRA alone, but it is distinguished by the least amount of loose elements.

3. Free-form Geometry
The purpose of the case study is to evaluate the suggested method efficacy in a wide range of scenarios.
Applying the technique to a base plan with a free-form curve such that its definition entails having
parametric design software create the mesh automatically. The two types of meshes that are the focus
of the investigation are a quadrangular mesh and a mesh made up of hexagonal and pentagonal pieces.
The edges in this Section of two meshes have an average length of about 1.50 meters. However, there
is a large degree of diversity in the initial elements due to the length range of the quadrangular mesh
constituent parts, which is around 0.80m to 2.30m. For the quadrangular mesh scenario, the structural
configuration produced using basic MRA with ρavg = 1.20 is shown in Figures 1a and 1c. In this
instance, structural parts that end up longer than the desired length of Lrope = 1.78m (loose ropes) are
shown in red. Because of the changes in the initial geometry, these elements make up more than 13% of
the 750 structural pieces that constitute the gridshell. As a result, building a real structure calls for more
than a hundred distinct kinds of structural components. Although this might be handled on the job site,
it presents difficulties for complicated and general structural shapes, making the administration of the
building process more difficult.

However, the structural configuration achieved through the application of i-MRA, as presented in this
paper, is depicted in Figures 1b and 1d. The improvement realized in this scenario is remarkable. This
technique enabled the calculation of a structural geometry that can be executed using only 7 types of
structural components with lengths Lrope = [1.78; 1.58; 1.45; 1.35; 1.25; 1.15]m. This outcome is im-
pressive and underscores how the methodologies outlined in Section 1. can significantly simplify con-
struction complexity.

The results of the structural analyses presented in Figure 2 show that the structural geometry changes
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(a) MRA planimetric view (b) i-MRA planimetric view

(c) MRA 3D view (d) i-MRA 3D view

Figure 1: MRA and i-MRA comparison using quadrangular mesh on a free-form structure. All the blue
ropes present the same length, the red ones are the loose elements

made possible by i-MRA do not cause a noticeably higher level of stress. When compared to the funda-
mental form-finding geometry (on the left), the structure calculated using i-MRA (on the right) shows
comparable values of axial force and bending moment. By using i-MRA, the number of structural com-
ponents used decreased from over 100 to just 6. Less than 0.7 % was a minor rise in the Von Mises
stresses despite the imposed geometric alterations. In addition, there was a roughly 20-fold reduction in
construction complexity as determined by the range of structural element types used.
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(a) MRA: |N |max = 6.0kN
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(b) i-MRA: |N |max = 5.5kN
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(c) MRA: |M |max = 2.76kNm
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(d) i-MRA: |M |max = 2.79kNm
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(e) MRA: |σV M |max = 21.53kPa
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(f) i-MRA: |σV M |max = 21.67kPa

Figure 2: Structural analysis of the structure with quadrangular mesh using basic MRA (left) and i-MRA
(right). Comparison between Von Mises stress (kPa) (bottom), bending moment (kNm) (middle), and
axial force (kN) (top). The assumed load is the structure’s own weight, and the material used is steel.
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Figure 3: MRA implementation on a hexagonal mesh free-form structure with ρ = 1.10.

4. Conclusions
The paper introduces improvements for a form-finding method for gridshell structures originally pro-
posed by the authors. Once a load condition is set, the basic MRA defines a structural geometry with
minimized eccentricity of compression forces, reducing bending moments. This approach models the
structure as masses connected by loose ropes, with dynamics solving yielding an equilibrium configura-
tion. To simplify construction management and reduce computational effort, two enhancement methods
are proposed for the basic MRA. The first involves grouping elements with identical lengths to mini-
mize required structural element types. The second introduces a repulsive force field to adjust geometry,
reducing unmatched components. The combination, termed i-MRA, is effective. Testing in an exam-
ple of free-form gridshell i-MRA shows a significant reduction in required components, especially with
complex geometry. Structural analysis indicates a minimal impact on static behaviour, with negligible
increases in internal actions and stress. Results also show the base mesh has minimal influence on slack
coefficient trends, while the initial mesh significantly affects the final geometry. This research lays the
groundwork for further exploration, including assessing method impacts on structural performance and
instability, integrating into optimization procedures, and optimizing panel and node shapes.
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