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Abstract 
This paper presents a computational form-finding framework for discrete equilibrium models aimed at 
early design stages and the exploration of innovative structural forms in static equilibrium. Geometric, 
static, and combined design constraints are incorporated here without computing derivatives. The 
method is based on an optimization scheme that works with a proximity function and constraint 
projections, a technique derived from computer graphics. It provides instant feedback, supporting a 
flexible and interactive design process. The framework is implemented in the Rhino/Grasshopper 
environment. To demonstrate its applicability, form-finding examples for a roof structure, a curved 
bridge, and a grid shell are carried out, and potential implications for the design process are discussed. 
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1. Introduction 
In the realm of structural design, the conceptual phase stands as a critical moment, signifying the most 
significant impact of a designer on the final product. At this stage, the exploration of design options 
assumes key importance, laying the basis for a sound design process. Form-finding can serve as a 
powerful tool in this process, facilitating the generation and exploration of efficient geometries. For the 
design of cable nets and structural membranes, form-finding has long been indispensable due to the 
absence of inherent bending capacity in elements. Consequently, finding an appropriate form becomes 
essential, as forces must be borne through the form itself. However, the advantages of form-finding 
extend beyond these specific structural types, as it empowers the design of more efficient structures 
across diverse domains. Traditionally, form-finding relied on physical models, exemplified by the 
hanging models of Heinz Isler [1] or the soap film models of Frei Otto [2]. With the advent of the 
computational age, this paradigm has shifted towards digital methodologies [3]. An important milestone 
was set by Linkwitz and Schek [4] with the force density method (FDM). It is noteworthy to emphasize 
that with the FDM, no materialization occurs, rendering the search for equilibrium solely a matter of 
reconciling form and forces. 

1.1 Related work and contributions 

A great advantage of the FDM is that it converts a nonlinear form-finding problem to a linear one. This 
advantage, however, is brought with the cost of flexibility as force densities (i.e., force-to-length ratios 
for all members of the structure) have to be introduced a priori. Efforts to overcome this limitation were 
made by Schek [5], Linkwitz and Veenendaal [6], and Tamai [7], among others, who introduced 
nonlinear extensions of the FDM. Nevertheless, utilizing force densities as design drivers still presents 
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a challenge due to their abstract nature. A solution to this is the statically-geometrically coupled method 
by Kemmler [8]. This method works with explicit forces when describing equilibrium conditions. In 
addition, internal forces are described as variables. While this brings the problem back to a nonlinear 
state, it also enables the incorporation of supplementary design constraints. However, it demands careful 
attention during problem setup, as the formulated constraints must avoid contradictions and ambiguity. 

In recent years, graphic statics [9], [10] has gained popularity for the exploration and form-finding of 
spatial structures. It describes a principal force flow of a structure through form and force diagrams. 
Ohlbrock and Schwartz [11] and subsequently Ohlbrock and D’Acunto [12] formalized this in the 
Combinatorial Equilibrium Modelling (CEM), a computational framework for the form-finding and 
conceptual design of structures. Later on, the CEM was combined with Graph Neural Networks [13] to 
simplify the input handling. Jasienski et al. [14] have introduced a computational implementation for 
3D vector-based graphic statics that allows the design of spatial structures in static equilibrium. 
Mirtsopoulos and Fivet [15] presented a generative approach based on grammar rules to explore a vast 
amount of structural forms and combined it with interactive genetic algorithms [16]. While their 
approach is powerful for exploration purposes, it remains challenging to maintain control over the 
resulting forms, introduce design constraints, and offer fast feedback on intended designs. 

Hence, this paper presents an original form-finding framework that allows any geometric and static 
constraints while maintaining fast feedback and control of an intended design. The framework is built 
upon constraint projections, a method derived from the field of computer graphics, more precisely from 
discrete geometry shaping, introduced by Bouaziz et al. [17]. This method allows the integration of a 
vast amount of design constraints while being relatively fast. In addition, design constraints can be 
contradictory, which will lead to a least-squares solution. The Grasshopper plugin Kangaroo2 [18] 
follows a related approach. Takahashi and Ney [19] presented a similar approach based on the concept 
of constraint projections to form-find structures. Takahashi [20] even extended it with the 
implementation of global objectives. Their approach is based on force densities for equilibrium 
computation, which can pose challenges for applying explicit force constraints. Furthermore, as 
described earlier, working with force densities involves an abstract procedure. In contrast, the approach 
presented here uses explicit force formulations, offering the significant advantage of (1) formulating 
direct force constraints and (2) providing an intuitive understanding of choices regarding forces. 

1.2 Layout exploration as a pre-step to form-finding 

It is worth mentioning that form-finding methods typically operate with pre-set topologies, limiting the 
scope of design exploration. It can, therefore, be useful to first explore options for a global layout – a 
rough global image of the final result – before diving into a form-finding process in which geometric 
and static boundary conditions are described explicitly and quantifiable. In previous research, Warmuth 
et al. [21] introduced a framework based on layout optimization aimed at obtaining an initial 
understanding of a structure’s global appearance. Traditionally, layout optimization aims to minimize 
the structure’s volume, following methods like the ground structure approach [22]. In this method, a 
network of interconnected nodes and lines is created, with the objective of selecting the combination of 
lines that minimizes the overall volume while adhering to static equilibrium. However, following a pure 
optimization – especially in early design stages – often yields structurally similar outcomes, which is 
contradictory to a proper exploration of diverse structural forms.  

A key concept of the layout optimization presented by Warmuth et al. [21] is the customization of the 
ground structure from which a layout is derived. This customization involves designers interactively 
placing nodes within the ground structure, along with defining design objectives formulated as 
optimization constraints to guide the optimization process toward desired outcomes. This approach 
empowers designers to explore structural forms beyond predefined types or topologies and is, therefore, 
a suitable pre-step to a following form-finding process. It is crucial to emphasize that both customized 
layout optimization and form-finding can function independently, generating valid structures in static 
equilibrium. However, it is the synergistic combination of these steps that exploits the full potential for 
exploring diverse design options. 
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2. Method 

The method presented in this paper is based on a proximity function to be minimized and the concept of 
constraint projections, as introduced earlier by Bouaziz et al. [17] and later used by Takahashi and Ney 
[19] for the form-finding of discrete structures based on force densities. 

2.1 Local-global optimization scheme 

The general approach is to resolve a form-finding problem by solving an optimization problem that is 
composed solely of constraints. These constraints may take various forms, i.e., geometric, static, or their 
combination. To satisfy these constraints a local-global optimization scheme is introduced. The key idea 
of this scheme is to replace the solving of constraint equations by the minimization of a proximity 
function that computes the weighted sum of squared distances of a point to its projection onto a collection 
of constraints ሼ𝐶ଵ,𝐶ଶ, … ,𝐶௜ሽ. Let 𝑑௜ሺ𝐱ሻ measure the ‘least amount of change’ in 𝐱 to satisfy a constraint 
𝐶௜. Then, the proximity function can be stated as 

 
Θሺ𝐱ሻ ൌ෍𝑤௜𝑑௜ሺ𝐱ሻଶ

௡

௜

 (1) 

where 𝑛 denotes the number of constraints and 𝑤௜ is a non-negative weight that controls the relative 
importance of each constraint 𝐶௜. 𝑑𝑖ሺ𝐱ሻଶ describes the distance of a set of variables 𝐱 to its projection 
𝑃௜ሺ𝐱ሻ onto a constraint 𝐶௜ . Thus, the proximity function can be rewritten as 

 
Θሺ𝐱ሻ ൌ෍𝑤௜‖𝐱 െ 𝑃௜ሺ𝐱ሻ‖ଶ

ଶ

௡

௜

 (2) 

This function determines how well all constraints are satisfied. Finding a solution that minimizes the 
proximity function to Θሺ𝐱ሻ ൌ 0, therefore, satisfies all constraints. Otherwise, a least squares solution is 
found. In order to solve Equation (2), the optimization is divided into two disjoint, local and global, 
steps, executed in an alternating update scheme. 

 

1. local step: Compute the projection 𝑃௜ሺ𝐱ሻ  for each constraint 𝐶௜  using the current 𝐱. 

2. global step: Compute a new 𝐱 based on the projections 𝑃௜ሺ𝐱ሻ of all constraints 
                          ሼ𝐶ଵ,𝐶ଶ, … ,𝐶௜ሽ. 

According to Bouaziz et al. [17], this scheme is guaranteed to converge to a local minimum. The great 
advantage here is that each constraint can be described independently and computed in parallel in the 
local step. In addition, no derivatives are required if projections of constraints are directly available. For 
this research, one constraint is crucial, i.e., the one that ensures that the structure is in static equilibrium. 
This constraint is explained in the following. 

2.2 Equilibrium constraint 

To obtain static equilibrium in a structure, all nodes need to be in equilibrium. Therefore, the global 
equilibrium is decomposed into a local equilibrium for each node, which is solved independently of the 
other nodal equilibrium constraints. For the example in Figure 1a, this means that eight equilibrium 
constraints need to be applied to ensure that the entire structure is in equilibrium. Figure 1b shows how 
equilibrium is computed for one node, here 𝐧଴. The variables at the local node level are the coordinates 
ሾx, y, zሿ୘ of 𝐧଴, which can be observed in the form diagram in Figure 1b, and the internal bar forces 𝑠୧ 
of all bars connected to 𝐧଴, shown in the force diagram in Figure 1c. This means that, in the scope of 
the local node equilibrium, the connected nodes 𝐧ଵ,𝐧ଶ,𝐧ଷ do not move and serve as virtual supports. 
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Figure 1. Computation of the equilibrium at the node level. 

Equilibrium at a node is achieved when the residual force vector 𝐑 ൌ  ൣ𝑅௫ ,𝑅௬ ,𝑅௭൧
୘

, as shown in the 
force diagram in Figure 1c, is null. For 𝐧଴ the residual force in x-direction 𝑅𝑥 can be written as 

 
𝑅௫ ൌ

𝑠ଵሺ𝑛ଵ,௫ െ 𝑛଴,௫ሻ
𝑙ଵ

൅
𝑠ଶሺ𝑛ଶ,௫ െ 𝑛଴,௫ሻ

𝑙ଶ
൅
𝑠ଷሺ𝑛ଵ,௫ െ 𝑛଴,௫ሻ

𝑙ଷ
െ  𝑝௫ (3) 

or generalized as 

 
𝑅௫ ൌ෍

𝑠௜Δ𝑥௜
𝑙௜

௞

௜

െ 𝑝௫ (4) 

where 𝑘 is the number of connected bars, Δ𝑥௜ ൌ  𝑛௜,௫ െ 𝑛଴,௫, 𝑙௝ ൌ  ටΔ𝑥௜
ଶ ൅ Δ𝑦௜

ଶ ൅ Δ𝑧௜
ଶ, and 𝑝௫ is the x-

direction component of a given external load. 𝑅௬ and 𝑅௭ are computed similarly in the y- and z-
directions. Thus,  

 min
𝒙,𝒚,𝒛,𝒔𝒊

𝐑 → 0 (5) 

can be efficiently solved using the Newton-Raphson method since the gradient of 𝐑, 
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is available analytically, where i indicates the number of bars connected to a node. ∇𝐑 consists of three 
rows for the residual force vector in x-, y-, and z-directions. The number of columns, however, is not 
fixed as it depends on the number of bars connected to a node. Columns 1-3 refer to the coordinate 
variables x, y, and z; columns four and higher refer to the force variables 𝑠௜. For instance, if two nodes 
are connected to a node 𝐧଴, there are two columns for force variables, i.e., five columns in total. 

After solving, the new variables 𝐱∗ ൌ ൣ𝑛଴,௫
∗ ,𝑛଴,௬

∗ ,𝑛଴,௭
∗ , 𝑠ଵ

∗, 𝑠ଶ
∗, 𝑠ଷ

∗൧
୘

  are the projection 𝑃𝑖ሺ𝐱ሻ for the 
equilibrium constraint 𝐶௜ at node 𝐧଴. By computing the projections for all other nodes, the local step of 
the alternating update scheme is fully computed, considering static equilibrium. 

2.3 Other constraints 

Besides static equilibrium, other constraints are available. The following constraints are implemented in 
the current framework. However, any constraint can be incorporated if a projection 𝑃𝑖ሺ𝐱ሻ can be 
computed.  

Table 1. Available constraints in the current framework. 

Constraint type Geometric Static 

 - Target length - Equilibrium 

 - Equal length - Target force 

 - Points on plane - Equal force 

 - Points on surface  

 - Points on curve  

 - Colinear points  

 

A broader selection of constraints can be found in Takahashi and Ney [19], Bouaziz et al. [17], or Piker 
[18]. 

3. Examples 
This section showcases three form-finding examples utilizing the framework introduced in Section 3, 
each representing a structure with diverse requirements in the form-finding process. 

3.1 Curved bridge 

First, the form-finding process is applied to a curved arch bridge. Here, the objective is to shape the 
bridge deck into an S-like curve. Figure 2a depicts the desired deck shape represented in light blue, 
alongside the initial setup featuring supports and loads. Additionally, an equal length constraint is 
imposed on the arch bars to ensure a visually cohesive appearance. In Figure 2b, the form-found structure 
in equilibrium is displayed. To satisfy equilibrium requirements, the arch has adopted an S-shaped 
configuration, counter to the movement of the deck. Figure 2c provides a schematic view of the curved 
bridge, encapsulating the achieved form and structural integrity. Overall, the entire computation process, 
encompassing the satisfaction of all constraints, converged within 5.8 seconds. 
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Figure 2. Form-ϐinding of a curved bridge, (a) initial setup and design constraints, (b) discrete equilibrium model, (c) 

schematic view of the resulting form-found bridge. 

3.2 Roof structure 

Next, the form-finding of a roof structure is shown. The initial layout, illustrated in Figure 3a, comprises 
four arches intended to span the final roof. These arches are interconnected with bars, facilitating self-
balancing. Furthermore, the arches are required to come close to a specific curvature, delineated by the 
light blue lines. In Figure 3b, the form-found roof structure is depicted, with the arches under 
compression and their connections under tension. Figure 3c provides a schematic view of the roof 
configuration, capturing its structural arrangement. Convergence was achieved after 6.7 seconds. 

 
Figure 3. Form-ϐinding of a roof structure, (a) initial setup and design constraints, (b) discrete equilibrium model, (c) 

schematic view of form-found roof structure. 
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3.3 Grid shell 

As a third example, a free-form grid shell is conceptualized. In Figure 4a, the initial setup presents a grid 
composed of 11x11 bars. The three light blue curves delineate the desired shape of the grid shell. 
Additionally, uniformity in bar length is sought to achieve an aesthetically pleasing appearance. Figure 
4b illustrates the resulting form-found grid shell in equilibrium, comprising ten arches in compression 
interconnected by bars in tension. Notably, the central “arch” is in tension, ensuring adherence to the 
imposed constraints. Figure 4c provides a schematic representation of the grid shell and its desired shape. 
The form-finding converged after 2.3 seconds. 

 
Figure 4. Form-ϐinding of a free-form grid shell, (a) initial setup and design constraints, (b) discrete equilibrium model, 

(c) schematic view of the resulting form-found grid shell. 

4. Conclusion 
This paper presented a numerical form-finding framework for discrete equilibrium models. Central to 
this method is the minimization of a proximity function by employing constraint projections to fulfill 
static and geometric form-finding objectives, e.g., static equilibrium. The method’s strength lies in its 
ability to compute constraints simultaneously, thereby significantly enhancing computational efficiency. 
Furthermore, the absence of derivative computations when constraints are expressible in closed form is 
a notable advantage. 

Implemented within the Rhino/Grasshopper environment, the framework offers practical applicability, 
as demonstrated through various examples for different types of structural forms. However, it is essential 
to acknowledge certain limitations. The outcome of the form-finding process is contingent upon the 
initial form and the selection of initial forces. Additionally, due to the utilization of different variable 
sets (coordinates and internal bar forces), their relative relationship can introduce instability into the 
process. An a priori normalization of variables could, however, solve this and is the subject of future 
development. Moreover, proper problem setup, a profound understanding of structural principles, and a 
conceptualization of the intended structure are crucial, as improperly defined scenarios may yield 
unsatisfactory results. Nonetheless, the framework presented herein offers a fast, general, and intuitive 
approach that facilitates the constraint-based exploration of innovative structural forms.  
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