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Abstract

Many compliant shell mechanisms are periodically corrugated or creased. Being thin, their preferred
deformation modes are inextensional, i.e., isometric. Here, we report on a recent characterization of the
isometric deformations of periodic surfaces. In a way reminiscent of Gauss theorem, the result builds a
constraint that relates the ways in which the periodic surface stretches, effectively but isometrically, to
the ways in which it bends and twists. Several examples and use cases are presented.
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1. Main result
Definition 1. A periodic surface x : (x, y) 7→ (x, y, f(x, y)) is the graph of some function f that is
periodic in x and y.

We are thinking of such a surface as the midsurface of a thin shell. Function f could be smooth and
describe a smoothly “corrugated” shell. It could be piecewise smooth and describe a shell with curved
creases (Figure 1). It could also be piecewise linear and describe an origami or origami-like tessellation.
The main premise of the present work is that the compliant deformation modes of the thin shell are in
correspondence with the isometric deflections of the midsurface.

Definition 2. An isometric deflection of a surface x : (x, y) 7→ (x, y, f(x, y)) is a displacement field
ẋ : (x, y) 7→ (u(x, y), v(x, y), w(x, y)) such that the infinitesimal strains

ε11 ≡ ⟨∂xx, ∂xẋ⟩, ε22 ≡ ⟨∂yx, ∂yẋ⟩, ε12 ≡
⟨∂xx, ∂yẋ⟩+ ⟨∂yx, ∂xẋ⟩

2

are zero. Therein, the brackets ⟨· , ·⟩ denote the usual dot product.

The reason behind that correspondence between isometric and compliant is that isometric deflections
only engage the flexure rigidity of the shell which is of order t3 with t being the thickness [1]. By con-
trast, non-isometric deflections are much stiffer since they also engage the membrane rigidity of order t.
That being said, it would be excessive to claim that any isometric deflection describes a compliant mode,
for within the word “mode” is typically embedded a notion of “uniformity” whereby the mode acts on
the shell as a whole and not on some restricted parts of it (say a corner or some small flat piece). Here,
we focus on two specific modes: effective membrane modes and effective flexure modes.

Definition 3. Let x : (x, y) 7→ (x, y, f(x, y)) be a periodic surface. An effective membrane mode is
an isometric deflection ẋ : (x, y) 7→ (u(x, y), v(x, y), w(x, y)) such that (i) w is periodic and (ii) the
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Figure 1: A periodic surface of the form (x, y, f(x)+g(y)) where f is a sine function and g is a triangular
pattern: (a-c) an effective membrane mode where the surface stretches without bending by bending
without stretching; (d) the same surface with more unit cells to help appreciate the curvatures seen in (e)
and (f). Theorem 1 states that (b) implies (e) and that the possibility of (f) implies the impossibility of
an effective shear membrane mode. Surfaces are computed using a triangulation; source code available
at https://github.com/nassarh/curvedCreaseOrigami.

effective strains

E11 ≡ ⟨p1, ṗ1⟩, E22 ≡ ⟨p2, ṗ2⟩, E12 ≡
⟨p1, ṗ2⟩+ ⟨p2, ṗ1⟩

2

are not all zero. Therein, vectors (p1,p2) outline a unit cell and vectors (ṗ1, ṗ2) are their deflections,
namely

p1 = x(L1, 0)− x(0, 0), p2 = x(0, L2)− x(0, 0),

ṗ1 = ẋ(L1, 0)− ẋ(0, 0), ṗ2 = ẋ(0, L2)− ẋ(0, 0),

where [0, L1]× [0, L2] is a unit cell.

Thus, for an isometric deflection to be an effective membrane mode, it must (i) produce the same
deflections within all unit cells and (ii) must leave a visible trace on the outline of the unit cell; see
Figure 1a-c.

Definition 4. Let x : (x, y) 7→ (x, y, f(x, y)) be a periodic surface. An effective flexure mode is an
isometric deflection ẋ : (x, y) 7→ (u(x, y), v(x, y), w(x, y)) such that w is periodic up to a non-zero
quadratic displacement χ11x

2/2 + χ22y
2/2 + χ12xy of effective curvatures χ.

Here too, all unit cells deform in the same fashion except for a quadratic deflection that describes an
overall bent state; see Figure 1d-f. The main result we want to report here is that effective strains
and effective curvatures constrain each other. That is: the ways in which the periodic shell effectively
stretches, contracts and shears in the plane constrain the ways in which it could effectively bend and
twist out of plane, and vice versa; see Figure 1.
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Theorem 1. Let x : (x, y) 7→ (x, y, f(x, y)) be a periodic surface that admits an effective strain E and
effective curvatures χ. Then,

E11χ22 − 2E12χ12 + E22χ11 = 0.

Proof. Admitted. See [2].

2. Previous work
Several contributions have proven Theorem 1 in particular cases of increasing complexity all within the
context of origami and origami-like tessellations. Therein, the theorem is often stated as an equality (up
to a sign) between an “in-plane Poisson’s coefficients”

νin ≡ −E22

E11
,

and an “out-of-plane Poisson’s coefficient”

νout ≡ −χ22

χ11
,

namely that
E22

E11
= −χ22

χ11
.

In words: the relative ratio of effective extensions is equal and opposite to the ratio of effective nor-
mal curvatures, the identity being valid in cases where E12 = 0. The first proofs of this identity were
obtained for the Miura ori [3, 4], then for the “eggbox pattern” [5, 6] and were soon extended to the
“morph” pattern [7] and more recently to any origami tessellation with four parallelogram panels per
unit cell [8, 9]. In all of these cases, the proof involves a computation that heavily relies on the discrete-
ness and simplicity of the unit cell and is hard to generalize, through an equally tractable computation,
to other surfaces with more panels per unit cell, with curved creases or with smoothly curved, non-
polyhedral, features. In comparison, Theorem 1 crushes at once all cases covered by the hypothesis of
piecewise smoothness using high level concepts from differential geometry and avoids any “brute force”
computations relying, say, on spherical trigonometry.

In order to give a taste of the kinds of results that Theorem 1 relies on, let for simplicity f be a smooth
function, and recall that the Gauss curvature of the graph of f is

Kf =
∂xxf∂yyf − (∂xyf)

2√
1 + (∂xf)2 + (∂yf)2

.

By Gauss theorem, Kf is an isometric invariant meaning that for an isometric deflection (u, v, w), one
has Kf = Kf+w which implies

∂yyf∂xxw − 2∂xyf∂xyw + ∂xxf∂yyw = 0.

Theorem 1 then leverages a self-adjointness property of this equation to justify an averaging step that
transforms it into the desired identity. Therein, two “symmetries” are crucial: (i) if w is an isometric
deflection of f then f is an isometric deflection of w. Indeed, the perturbation Kf −Kf+w turns out to
be symmetric in f and w. And, (ii) the Hessian of f is a symmetric matrix. The full proof can be found
in [2].
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3. Use cases
Morally, Theorem 1 establishes some sort of a “principle of conservation” between rigidity and flexibil-
ity. Here is how.

Example 1. The plane (x, y) 7→ (x, y, 0) admits the effective flexure mode (x, y) 7→ (0, 0, x2/2) whose
effective curvatures are

[χ] =

[
1 0

0 0

]
.

Thus, by Theorem 1, any effective strain E satisfies

E22 = 0.

Similarly, E11 and E12 are null meaning that the plane admits no effective membrane modes. No sur-
prises here. It is just reassuring that the implications of the theorem are consistent with expectations in
such simple cases.

Example 2. The simply corrugated plane (x, y) 7→ (x, y, cos(x)) can still effectively bend in the x-
direction meaning that it cannot effectively stretch in the y-direction: E22 = 0. By contrast, the corru-
gation in the x-direction enables an effective membrane mode that stretches in the x-direction: E11 ̸= 0.
Then, by the theorem, there can be no effective bending in the y-direction: χ22 = 0. Again, this is con-
sistent with expectations: corrugating in one direction stifles bending in the orthogonal direction. But
the interpretation is quite novel and remarkable: the corrugated plane gains an effective membrane
mode, and therefore loses and effective flexure mode.

Example 3. Any doubly corrugated surface (x, y) 7→ (x, y, f(x) + g(y)) admits the effective flexure
mode (x, y) 7→ (0, 0, xy) with effective curvature χ12 = 1. Indeed, w = xy solves equation 2., namely

f ′′∂yyw + g′′∂xxw = 0

Thus, by the theorem, effective membrane modes are all shearless: E12 = 0. In other words, all doubly
corrugated surfaces resist shear.

Example 4. Similarly: the Miura ori twists easily indicating that it admits an effective flexure mode
with χ12 ̸= 0. Thus, by the theorem, the Miura ori resists shear: E12 = 0. The observation should be
easily verifiable by anyone with access to a Miura ori: it twists easily but shears hardly, if at all.

Example 5. Theorem 1 also generalizes the identity of the Poisson’s coefficients to cases where E12 ̸= 0.
Suppose a surface admits an effective membrane mode of effective strain E and an effective flexure mode
of curvatures χ. Write the components of E′

αβ and χ′
αβ in a basis aligned with the principal directions

of strain. Then E′
12 = 0 and

E′
22

E′
11

= −χ′
22

χ′
11

.

In particular all “auxetic” periodic shells bend anticlastically and all “anauxetic” periodic shells bend
synclastically (in the directions of principal effective strains).

4. Extensions and limitations
Here, we adopted an infinitesimal notion of isometric deflections. There exists a variant of Theorem 1
that applies in a geometrically non-linear setting, i.e., for finite isometries [2]. In that case, Theorem 1
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provides an equation that describes the shape of a periodic shell resulting from a finite effective isometric
deformation; see examples investigated in [5, 10].

It should be highlighted that Theorem 1 only informs on the interactions between membrane and flexure
modes should they exist. But it does not provide existence conditions for either. Furthermore, Theo-
rem 1 only applies to closed surfaces, i.e., surfaces without cutouts. Indeed, cutouts introduce boundary
conditions that the present geometric approach appears to be ill-equipped to handle.

Finally, the theorem implicitly presumes the existence of two scales: a small scale that corresponds
to the scale of the unit cell, and a large scale that corresponds to the scale of the effective strains and
curvatures. However, recent investigations revealed that there is a third intermediate scale that emerges
in cases where a periodic surface has effective flexure modes but no effective membrane modes (e.g.,
Ron Resch pattern, Yoshimura pattern, etc.); see [11, 12].
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