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Abstract

Using homological techniques we show that a pin-anchored frame that involves only moments and shears
provides a conceptual bridge between the statics of moment frames and the kinematics of pin-jointed
trusses. One immediate result is a long exact sequence whose alternating sum of dimensions gives a
novel counting rule for self-stresses and mechanisms. This combines the Maxwell-Calladine count for
pin-jointed trusses with the circuit rank (first Betti number) associated with self-stresses in moment
frames. These relations apply to frames in 2, 3 or any dimensions. This work heralds a shift towards a
deeper study of the relationships and dualities that exist between structural equilibria and kinematics.
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1. Introduction
Homological algebra provides powerful tools for describing the fundamental structural properties of
both axially-loaded pin-jointed trusses and rigid moment frames [1, 2, 3]. This paper focuses on the
use of cellular cosheaves [4]. These are used to store the geometric data embodied by the kinematic
and static properties of trusses and frames: the forces, moments, displacements and rotations and their
inter-relationships that are familiar concepts in structural engineering. Once the data is so organised, the
full power of the description arises when the techniques of homology theory are applied. Specifically,
counting rules that relate node and bar counts to the numbers of possible mechanisms and states of
self-stress are developed, creating a novel link between two familiar counts:

• the Maxwell-Calladine count for a pin-jointed truss [5]; and

• the (circuit rank) count of the number of cuts needed to make a statically-determinate tree from a
rigidly-connected moment frame.

Central to this connection is an intermediate frame system whose joints and members can transmit shears
and moments, but whose bars cannot carry axial tension. We call this an “anchored frame.”

This work represents a first step towards a rigidity theory for moment-resisting frames. Following pi-
oneering work by Henneberg [6], Pollaczek-Geiringer [7] and Laman [8] among others, much is now
known about the rigidity of structures. Both Graver’s classic text Counting on Frameworks [9] and the
recent and more comprehensive interdisciplinary book Frameworks, Tensegrities, and Symmetry [10] by
Connelly and Guest not only provide strong introductions but also highlight an immediate problem: in
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their study of geometric systems with distance constraints, rigidity theorists concern themselves almost
exclusively with what they call bar-joint frameworks. In structural engineering, these are referred to
as pin-jointed trusses, with bars transmitting only axial loads. In this paper, we widen the focus to the
rigidity of a wider class of structures whose inter-connected bars can carry not only axial forces but also
shear forces, moments and torsions. In engineering, it is this ability to transmit moments that warrants
the use of the word frame or framework.

This paper is thus a step towards a possible substantial broadening of scope for rigidity theory, opening
up potential avenues for the detailed study of the rigidity of frames. Although arguments exist about why
axial-only structures may offer material efficiencies, beams that bend are central to structural engineering
and much of the infrastructure around us. Moment frames are thus worthy of deeper study.

Beyond this, a theory that can sensibly represent moments may also help resolve certain singularity
issues that arise within the pin-jointed, axial-only ansatz. There, it is well known that some topologies
can carry states of self-stress only if certain geometrical conditions are satisfied. A classic example is
a 2D truss in the Desargues configuration (see Fig IV of Maxwell 1864 [11] and Fig. 5 later) where
the truss can carry a state of self-stress (and possess a mechanism) only if the lines of three particular
bars meet at a point. This is a highly non-generic condition. In practice, just how close do those three
bars have to be to meeting at a single point? If moments are considered this all-or-nothing pathology is
avoided. If the three bars do not quite meet at a point, states of self-stress still exist nearby: they will
simply contain some small moments. The anchored frame resolves some of these concerns, describing
where truss self-stresses and mechanisms algebraically “go” when shifting the geometry.

2. Cosheaves and Truss Statics
We develop frame and truss statics in terms of cellular cosheaves and their homology. Although this is
a highly abstract definition, one quickly finds that cosheaves simply redescribe systems and operations
that are intuitive and used by engineers everyday.

A framework is an abstract graph G = (V,E) along with a geometric realization p : V → Rn that
assigns each vertex v ∈ V a point p(v) = pv in Euclidean space. Edges are realized as straight line
segments with (G, p) a geometric graph. Whenever vertices u, v are incident to an edge e we use the
notation u, v � e. In this paper we will primarily consider frameworks in the ambient space R2.

Definition 1 (Cellular cosheaf, [4]). Over a framework (G, p) a cellular cosheaf K is comprised of

• vector spaces Ke and Kv assigned to each edge e and vertex v, respectively, called stalks, and

• linear maps Ke�v : Ke → Kv between every incidence v � e.

A cellular cosheaf as of now is nothing more than a way to bookkeep what geometric data is assigned to
which cell, and how this data interacts.

Example 2 (2D truss statics). What is the stress data assigned to a pin-jointed truss? Each edge e of
a framework (G, p) is assigned an axial tensile or compressive force scalar. These internal forces are
propagated to vertices, where these forces are summed with external loads. The axial force cosheaf
encoding these forces has Fe = R, Fv = R2, and linear maps Fe�v being embeddings of R into the
larger space R2. In other words, at an edge u, v� e both maps Fe�v and Fe�u are the same 2×1 matrix
ℓe = (puy − pvy, pux − pvx)

⊤, with range denoted by the subspace e ⊂ R2.

The truss equilibrium matrix A is a size 2|V | × |E| matrix that transmits all internal loads to external
load spaces, where | · | denotes the dimension/size of the space/set. (In rigidity theory this matrix is the
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transpose of the so-called rigidity matrix [12].) If w is a vector of axial loads over edges, we say that w is
a self stress if A(w) = 0. This condition requires all internal forces to equilibrate at each vertex without
the need of external forces. In cosheaf notation, we combine all linear maps into the boundary matrix
∂F = A with non-zero blocks ±Fe�v wherever there is an incidence v � e. The axial load assignment
w is called a chain with local components we ∈ Fe = R. If ∂F (w) = 0 then w is called a cycle.

The terminology of chains and cycles comes from algebraic topology. Chains are arbitrary vector as-
signments to all stalks of a given dimension, that is, elements of the combined stalk spaces

C0K =
⊕
v∈V

Kv; C1K =
⊕
e∈E

Ke, (1)

(the same as the product Kv1
× Kv2

× · · · of finite dimensional vector space stalks). Furthermore, the
cosheaf boundary map is a linear map between spaces of chains

∂K : C1K → C0K; (∂K(w))v =
∑
e:v�e

±Ke�v(we), (2)

where (∂K(w))v is the component of ∂K(w) ∈ C0K in the stalk Kv. The choice of sign in Equation (2)
is informed by an arbitrary orientation for the edges – the sign is positive if the edge “points towards” v

and is negative otherwise. The homology of a cosheaf K then consists of the two vector spaces

H1K = ker ∂K ⊂ C1K; H0K = C0K/im ∂K ∼= (im ∂K)
⊥ ⊂ C0K (3)

where the latter space is a quotient vector space of C0K by the image of the boundary map ∂K.

Homology often captures the most important aspects of the system; for the force cosheaf, H1F is the
space of self stresses while H0F is (isomorphic to) the space of infinitesimal degrees of freedom, the
combined space of rigid body DOF RF and mechanisms MF .

Example 3 (Classical homology). Chain complexes and homology were born from classical construc-
tions in algebraic topology from a century ago [13]. Invented to quantify topological features, classical
homology detects the number and arrangement of voids and holes of an abstract space. One attaches a
scalar value R to every cell, with boundary map ∂ : CiG → Ci−1G called the signed incidence matrix.
Over a graph G, H1G is the linear span of cycles while H0G encodes connected components.

The classical Euler characteristic X, the alternating sum of vector space dimensions, is a powerful
topological invariant of spaces [13]. For a graph G, using the rank-nullity theorem we find

X(CG) = |C0G| − |C1G| = |V | − |E| = |H0G| − |H1G| = X(HG). (4)

If G is connected then H0G is 1-dimensional and following Equation (4) the number of graph cycles is
|H1G| = |E| − |V |+ 1 (in graph theory, this is known as the circuit rank).

An example of the Euler count applied to cosheaves is the Maxwell-Calladine counting rule [5]

X(CF) = 2|V | − |E| = |RF|+ |MF| − |H1F| = X(HF) (5)

over the force cosheaf F , enveloping counts of self-stresses, rigid DOF RF , and mechanisms MF [1].
This is the alternating count of Equation (4) replacing standard homology with the homology of F .
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3. Frame Statics
Example 4 (Plane frame statics). Moment frame elements have a simple formulation and boundary
map. Suppose that (G, p) is a single edge with two endpoints u, v � e embedded horizontally along
the x-axis in R2. Letting M be a function representing the moment along the beam; it is well known
that its derivative dM

dx is the shear along the beam. Assume that the shear force Fy is constant so M has
constant slope. Then the linear function M over the edge e is M(t) = Me + Fy · t, where Me is the
moment at the edge center pu+pv

2 and t parameterizes a location along the length of the beam; see Fig. 1
(a) where a moment function M(t) is graphed over an edge. Then the induced moments at pu and pv
are the magnitudes of Fy

pu−pv

2 and Fy
pv−pu

2 . Letting we = (M,Fx, Fy) be a force-couple at the edge
center, the induced spatial force at pu and pv in coordinates follows from applying matrices:

∂M(we)u =


1 0 ∥pu−pv

2 ∥

0 1 0

0 0 1



M

Fx

Fy

 ; ∂M(we)v = −


1 0 −∥pu−pv

2 ∥

0 1 0

0 0 1



M

Fx

Fy

 (6)

where the edge e is oriented towards u in this notation.

To cleanly represent a force couple transform, we introduce the exterior product space
∧2Rn, the vector

space consisting of formal bilinear pairs x∧ y where x∧ y = −y ∧ x over vectors x, y ∈ Rn. It follows
immediately from this definition that x∧x = 0. With x, y a basis for R2 the pseudo-scalar M = x∧y is
a basis for

∧2R2. In dimension three,
∧2R3 consists of moments Mx,My,Mz in the three directions,

with wedge product equivalent to the cross product (after applying the Hodge-star operator).

The exterior product models moments. The moment generated by a force vector F ∈ Rn applied at a
lever arm ℓ ∈ Rn is equal to the product F ∧ ℓ.

Definition 5 (Moment cosheaf). Over a framework (G, p) in R2, the moment cosheaf M has stalks
Me = Mv =

∧2R2 ⊕ R2 comprised of force-couples at each cell. Each cosheaf stalk map

Me�v(M,F ) = (M + F ∧ pv − pu
2

, F ) ∈ Mv (7)

sends a force couple at the edge center pu+pv

2 to a force couple at the coordinate pv.

One can check that the linear map (7) aligns with those in Equation (6), combining to form the size
3|V | × 3|E| frame equilibrium matrix B = ∂M : C1M → C0M after choosing bases. The moment
cosheaf M has a particularly simple homology type. In a connected rigid frame clearly the combined
system has three rigid body DOF in R2 and six rigid body DOF in R3, spanning H0M = RM.

The homologies H1M and H0M are in fact isomorphic to 3 copies of the classical homologies H1G

and H0G in R2 and 6 copies in R3. Applying the Euler equation (4) to the cosheaf M in R2 we find

|H1M| = |H0M|+ 3(|E| − |V |) = 3(|E| − |V |+ 1) = 3|H1G|. (8)

where H1M = kerB is the space of frame self stresses. This circuit rank count is familiar in elementary
structural engineering. Trivially, a fully-welded frame requires |E|− |V |+1 cuts to make it a statically-
determinate tree. In 2D there are three independent stress resultants (axial, shear and bending) at each
such cut, hence Equation (8). In 3D there are six stress resultants at each cut.
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(a) The moment cosheaf M over an edge. The rigid
beam transmits axial, shear, and bending forces. A mo-
ment function is graphed over the beam.

(b) The anchored cosheaf N over an edge. The mid-
beam joint transmits bending, shear, and torque but no
axial force. The pinned anchors remove residual shear.

Figure 1: Sketches of the moment M and anchored N cosheaves over an edge.

4. The Anchored Cosheaf
While the axial force cosheaf F and moment cosheaf M have been discussed separately, the true power
of cosheaf theory comes from the relationship between the two.

Definition 6 (Cosheaf map). A map between cosheaves ϕ : K → L is a collection of stalk-wise linear
maps ϕe : Ke → Le and ϕv : Kv → Lv such that the map compositions Le�vϕe = ϕvKe�v are equal at
every incidence v � e. This equation ensures that the systems “align/agree” across cell incidences.

We can formally state how the moment cosheaf M subsumes the force cosheaf F , meaning truss stresses
“are” frame stresses. There is an injective map ϕ : F → M which is comprised of embeddings
ϕe : Fe → 0 ⊕ R2 ⊂ Me at edges. At vertices ϕv : Fv → 0 ⊕ R2 ⊂ Mv simply adds zero moments
to nodal forces in Fv. To see this satisfies Definition 6, if ϕe(w) = Fe ∈ e ⊂ R2 is an axially aligned
force vector then Fe ∧ pu−pv

2 = 0 in the stalk map Me�v, as (pu − pv) ∈ e. Thus there is no moment
component and ϕvFe�v = Me�vϕe.

The injective cosheaf map ϕ induces a quotient cosheaf M/ϕF which we will denote as N and call a
anchored cosheaf. This quotient cosheaf has stalks Ne = Me/ϕFe =

∧2R2 ⊕ R2/e of dimension 2

and stalks Nv
∼=

∧2R2 of dimension 1 over edges and vertices. At the physical level, the cosheaf N
ignores the axial forces over edges and ignores all forces at vertices, so that it only considers the moment
and shear components. A cosheaf stalk map Ne�v takes an axial-free force couple in Ne and computes
its induced moments at the edge endpoints, quotienting out the forces at v.

Example 7 (Statics of the anchored cosheaf). An anchored frame should be thought of as a moment
frame where each stiff juncture v is held in place by an external anchor restricting translation but not
rotation. These “anchors” are physically pin-joints to an external system1. However, there then are are
trivial degrees of axial self-stress over each edge; to eliminate these we insert a prismatic “sliding joint”
mid-member that permits free axial extensions but restricts (and transmits) shear and moments. A sketch
of an anchored frame element is pictured in Fig. 1 (b). The extending joint has been previously utilized
to model shell structures [14].

The anchored cosheaf N over a framework (G, p) models this anchored frame system. The edge stalk
Ne

∼=
∧2R2 ⊕R2/e has the axial force quotiented out – equivalent to the mid-member extension joint.

The vertex stalks Nv
∼=

∧2R2 only need to detect moments because the anchor, as a pin-joint, absorbs
any residual force. The homology H1N , the kernel of the size |V | × 2|E| equilibrium matrix ∂N ,
describes the valid states of self-stress of the anchored system. Moments and shears combine just as in
a moment frame (in M), but the external pinned reactions eliminate the residual net shear force.

In summary, the cosheaves F ,M,N form a short exact sequence of cosheaves

0 → F ϕ−→ M π−→ N → 0. (9)
1It is critical to note that the members are still rigidly attached to one another: the junction is not a pin itself but instead has

reaction forces applied to it through a pinned connection.
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where π : M → N is a cosheaf map projection. Exactness means that kerπ = imϕ; consequently stalks
can be decomposed as Me

∼= Fe⊕Ne and Mv
∼= Fv ⊕Nv. The map ϕ converts a pin-jointed truss to a

moment frame by physically “gluing” the pins shut, allowing them to transfer shear and moments. The
map π takes a moment frame and inserts extension joints as well as pinned anchors at each junction.

5. The Homological Relations of Moment Frames
We motivate the following technical analysis with a simple example.

Example 8 (Frame counts). Consider the 2D frame whose bars are all moment-connected and whose
joints are all fully encastré supports. Releases of constraints lead variously to the anchored frame and the
pin-jointed truss (see Fig. 2). The number of states of self-stress in the anchored frame may be readily
determined by considering the first two frames incrementally removing constraints. Following Equa-
tion (8), the number of states of self-stress for the moment frame is 3 times the circuit rank, including
three rigid body motions in 2D. Together, these counts redevelop the Maxwell-Calladine count for the
2D truss.

Figure 2: Five structures. The first has fully fixed joints and supports. The second releases the support
moments. The final three are the fully-rigid frame, the anchored frame and the truss. The Maxwell-
Calladine count for trusses is (3×) the circuit count for frames minus the count for the anchored frame.

The homological algebra allows us to mathematically formalise these relationships. Every short exact
sequence of cosheaves (9) induces a long exact sequence of homology for all indices i:

· · · π∗−→ Hi+1N
ϑ−→ HiF

ϕ∗−→ HiM
π∗−→ HiN

ϑ−→ Hi−1F
ϕ∗−→ · · · (10)

where ϕ∗ and π∗ are induced maps between homology spaces (which simply restrict and project onto
homology spaces). The maps ϑ : Hi+1N → HiF are called connecting homomorphisms following
from the snake/zig-zag lemma in algebraic topology [13]. Exactness means that for every term in (10)
the image of the incoming linear map is the kernel of the outgoing map. The derivation is too much to
go into here but see [2] for an exposition. The takeaway is that this is a powerful method from algebraic
topology that describes linear relations between homology spaces (here self-stresses and DOF).

Over a framework (G, p) in R2 the homology space H0F consists of pin-jointed kinematic degrees of
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freedom containing at least 3 degrees of rigid body DOF. These trivial DOF are precisely those that
generate H0M. The long exact sequence of the trio F ,M,N is

0 → H1F
ϕ∗−→ H1M

π∗−→ H1N
ϑ−→ MF ⊕ RF ϕ∗−→ RM → 0 (11)

where the homology space H0N must be zero because ϕ∗ : H0F → H0M is surjective. This homology
map ϕ∗ maps rigid body truss DOFs to rigid body frame DOFs with kernel MF (mechanisms aren’t
frame DOFs and so ϕ∗(MF) ⊂ im ∂M). We can simplify this sequence by removing both rigid body
DOF terms to form a reduced long exact sequence

0 → H1F
ϕ∗−→ H1M

π∗−→ H1N
ϑ−→ MF → 0 (12)

where the connecting homomorphism ϑ : H1N → MF is surjective onto mechanisms. Here ϑ is
simply the linear map that inputs an anchor frame self-stress and outputs the resultant shear forces at
nodes — the green force arrows in Fig. 4 (b) and Fig. 5 (a). It is interesting to interpret the physical
meaning of sequence (12):

• At H1F , every axial self-stress is also a frame-self stress in H1M (ϕ∗ is injective).

• Every anchored cosheaf self-stress in H1N is a combination of a moment frame self-stress in
H1M, and a stress corresponding to a pin-jointed truss mechanism. Formally this is the statement
H1N ∼= imπ∗ ⊕ imϑ⊤ where ϑ⊤ is the adjoint/transpose of ϑ.

• The last map ϑ : H1N → MF is surjective, so every pin-joint mechanism in MF is the image
of an anchored frame self-stress H1N with force resultants encoding the mechanism velocities.

These algebraic relations are sketched in Fig. 3. The last point is significant enough for its own statement.

Theorem 9 (Mechanisms from the anchor-frame). Every pin-joint mechanism of a framework (G, p)

follows from the shear resultants of an anchored frame self-stress over (G, p) (i.e. support reactions).

Example 10 (Moments over a box frame). Suppose that (G, p) is the simple square frame embedded
in R2. There are clearly no truss axial self-stresses so line (12) reduces to a short exact sequence. By
the isomorphism H1N ∼= H1M ⊕ MF , we see that there are 3 + 1 = 4 states of anchor frame self-
stress. The first three come from self-moments in H1M, generated by a unit axial force, shear force,
and moment at a particular edge. These are pictured in Fig. 4 (a). The last state imparts forces which
are absorbed by the anchors, pictured in Fig. 4 (b). These forces also inform a mechanism of a square
pin-jointed truss, warping the square into a parallelogram.

5.1. An Anchored Stress Counting Rule

The Euler count (4) of the exact sequence (12) (as a chain complex) is the following alternating sum:

X(12) = (|H1F| − |MF|) + |H1N| − |H1M| = 0 (13)

which by exactness equals zero. These homology dimensions can be reformed in terms of cell numbers.
The left-most term is the reduced Maxwell count (5) without rigid DOF while the right-most term
|H1M| has the cycle dimension 3(|E| − |V | + 1) following from Equation (8). Since H0N = 0, then
a simple Euler count gives |H1N| = |C1N| − |C0N| = 2|E| − |V |. Inserting these into Equation (13),
we have the following:
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Figure 3: A schematic of the equilibrium operations in the three structural systems (truss, frame, and
anchor frame) as well as the linear relations in the long exact sequence (11) in clockwise order. The blue
regions are pure axial self-stresses, the red regions are mixed frame self-stresses, the cyan regions are
mechanisms/pure anchored frame self-stresses, and the yellow regions are rigid body DOF. The purple
regions correspond to the dimensions of full rank of each equilibrium matrix.

Theorem 11 (Anchor-frame stress count). Over a framework (G, p), the dimension of anchored frame
self-stresses |H1N| is equal to a multiple of the cycle count minus the reduced Maxwell count (5). Thus

in R2 : |H1N| = 3(|E| − |V |+ 1)− (|E| − 2|V |+ 3) = 2|E| − |V | (14)

in R3 : |H1N| = 6(|E| − |V |+ 1)− (|E| − 3|V |+ 6) = 5|E| − 3|V | (15)

To the authors’ knowledge, this is the first time the Maxwell count has been combined with the graph-
theoretic cycle count in an application. Visually in Fig. 3, Theorem 11 is the statement that the di-
mensions of the red and cyan regions can be counted two ways. The first is directly counting |H1N|.
The second is through summing |C1M| + |C0F| then subtracting the dimensions of C0M and C1F ,
removing the blue, yellow and purple regions with only red and cyan regions remaining.

Example 12 (The Desargues anchor frame). Examine the Desargues configuration in Fig. 5 (a) with
cosheaf homology dimensions listed in (b). The homology map ϕ∗ : H1F → H1M is injective and
has rank 1, so by exactness kerπ∗ = imϕ∗ is dimension 1, and thus the rank-nullity theorem states that
π∗ : H1M → H1N has rank 11. The sole generator of (imπ∗)

⊥ ⊂ H1N is pictured in (a); other
generators of H1N are derived from ordinary frame self stresses H1M of the Desargues frame.

Moving down the long exact sequence (12), because ϑ : H1N → MF is surjective the anchor-frame
stress in (a) generates the sole mechanism of the configuration. The residual shear forces when summed,
drawn with green arrows, form the mechanism of the truss (with anchors removed).

From Theorem 11 we find that |H1N| = 2|E| − |V | = 12, in agreement with the table in Fig. 5 (b).
The Maxwell count is |H1F| − |H0F| = −3 and the extended cycle count is |H1M| − |H0M| = 9.
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(a) Three basis cycles for H1M are pictured. Each is generated from a unit axial, shear or moment over the
leftmost member. These pass to linearly independent elements of H1N .

(b) The final generator of H1N with green resultant forces.

F M N

s; dimH1 0 3 4

m; dimH0 4 3 0

(c) Table of cosheaf homology dimensions.
Figure 4: Anchored cosheaf self-stresses over a box frame.

Taking the difference of these two counts is 9−(−3) = 12, the aforementioned count of anchored-frame
self-stresses.

The existence of the non-trivial self-stress and mechanism of the Desargues framework relies on the
three vertical edges meeting at a point (in projective space), a delicate condition. After perturbing the
system both H1F and H0F decrease in dimension while the dimensions of H1M and H1N stay the
same. What changes in sequence (12) is the rank of the map ϕ∗ : H1F → H1M decreases, which by
exactness means that π∗ : H1M → H1N must increase in rank. Thus the cycle pictured in Fig. 5 (a)
becomes a state of frame self-stress in H1M. This example suggests that the cosheaf N can be used to
better understand pin-jointed truss mechanics near singular points in its geometry.

(a) The generator of H1N orthogonal to the frame self-stresses in π∗(H1M).
This self-stress of N is mapped to a Desargues truss mechanism by ϑ.

F M N

s; dimH1 1 12 12

m; dimH0 4 3 0

(b) Table of cosheaf homology di-
mensions.

Figure 5: An anchor-frame self-stress in H1N is pictured over the Desargues configuration.
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6. Conclusion
We have described a new structural system, the anchored frame whose moment-dominated statics tie
together the statics of pin-jointed trusses and rigid moment frames. The theory led to a counting rule for
anchored frames incorporating both the Maxwell-Calladine rule and the graph cycle count. Moreover,
each pin-jointed mechanism is encoded by the resultants of anchored frames. For future work, the
authors intend to describe the discontinuous Airy stress functions [15] homologically.
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