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Abstract 
Strut-tie modeling was first devised as a load-path design strategy for engineers, which aims to 

represent the internal load path with stress resultants. However, since constructing appropriate load paths 
is not a straightforward task, strut-tie model generation usually relies on automated, optimization-based 
techniques. This study proposes an alternative design framework of strut-tie models using rigidity 
circuits, whose topological structure always admit a state of self-stress. In the design workflow, the 
initial form diagram must be constructed as a rigidity circuit using additional nodes and edges. The 
correspondence of a rigidity circuit with a unique polyhedral lifting and graph operations preserving its 
structure are utilized to establish suitable load path modification operations on the local Airy polyhedron. 
Simple design examples show the robustness of the resulting force network under changes in direction 
and its ability to represent various sparse load paths. The proposed framework helps designers develop 
load paths based on their decisions, reinstating the aspects of design in strut-and-tie modeling.  

Keywords : strut-tie model, graphic statics, Airy stress function, load path design, graph theory, rigidity theory, Maxwell-
Cremona correspondence  

1. Introduction 
The strut-tie model is a valid load path expressed with internal force resultants equilibrating external 

loads applied to a domain, following the lower bound theorem of plasticity [1]. It was first introduced 
as a consistent tool for calculating the ultimate load and designing reinforcement in concrete structures 
with complex local stress distributions, but its concept is also widespread in other fields of structural 
design. Strut-tie models can be used to explore and visualize structural design alternatives in different 
domains, being interpreted as a physical tensegrity structure with bars and cables or an abstract load path 
in both discrete and continuous domains [2]. Self-stress states in structures including vaults and 
gridshells can also be seen as a strut-tie model.  

1.1. Related Work 
There are two main perspectives in generating strut-tie models. First, there are optimization-based 

methods which share a common objective to minimize the complementary energy or volume of the 
structure. Layout optimization is usually employed in the discrete setting, where the ground structure is 
generated and redundant bars are removed using mixed integer linear programming methods [3]. In the 
continuous domain, topology optimization is used to find the most efficient distribution of materials 
under the external loads.  

 On the other hand, there are recent developments in the automatic generation of strut-tie models which 
are more focused on the diversity of forms and the interactive nature of design [4]. In these generative 
models, graphic statics becomes an essential tool which helps designers to quickly and intuitively 
explore diverse solutions in equilibrium. The process of designing force networks with graphic statics 
usually exploits the reciprocity of form and force diagrams to directly evaluate and modify the edge 
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forces by the lengths of the corresponding edges in the force diagram. In order to alter the direction and 
magnitude of the forces, either the force diagram [5] or the form diagram can be the main object for 
design.  

Konstantatou et al. [6] proposed a geometric design workflow of strut-tie models based on polyhedral 
graphic statics which uses stress functions that are one dimension higher than the form diagram. The 
classic observation from Maxwell[7] denotes the correspondence between states of self-stress and 
polyhedral liftings of planar 3-connected bar and joint frameworks. A polyhedral lifting of the form 
diagram is equivalent to the discrete Airy stress function of a self-stress state in that forces in the bars 
are proportional to the difference in the gradients of the faces.  

In the proposed workflow, the form diagram is first transformed into a self-stressed truss structure and 
then lifted vertically to form a closed polyhedron. This process of lifting requires identifying if the given 
form diagram represents a projection of a polyhedron in plane. However, graphs with a relatively small 
number of edges must satisfy a strict projective geometric condition such as the Desargues configuration 
to have a polyhedral lifting[8]. For this reason, recognizing the existence of a polyhedral lifting is greatly 
affected by instabilities in vertex positions. Also, the boundary forces and the topology of the form 
diagram are unchanged, limiting the concept of ‘design’ to parallel redrawing of the form diagram.  

1.2. Contributions  
This paper extends the geometric Airy-polyhedron based procedure for designing strut-tie models by 

using results from rigidity theory on graphs to provide more tools for the actual manipulation of load 
paths. A special category of graphs called rigidity circuits[9], which always have a self-stress state from 
its combinatorial structure, is utilized as the building block of the form diagram. Rigidity circuits are 
closed under combination and decomposition operations which enable engineers to modify internal load 
paths. In addition, a planar rigidity circuit can always be lifted into an oriented spherical polyhedron. 
This fact reduces the difficulty of constructing Airy polyhedra and facilitates interactivity in load path 
design by visually representing the designed results as a geometric object.   

This paper mainly contributes to the following improvements in the design workflow:  

1) Additional details on the workflow including construction of the initial two-layered Airy 
polyhedron and local load path modifications 

2) Simple demonstrations of the design procedure to explain the capacity of force networks 
modeled as rigidity circuits to represent both simple and atypical load paths.  

In general, any self-stressed force network may be added or subtracted to the form diagram to modify 
the edge forces and overall load path. However, using rigidity circuits is a more robust approach to find 
a spanning load path corresponding to a self-stress state which is not locally self-contained[10]. The 
main limitation of using rigidity circuits is that the family of rigidity circuits is not strictly closed under 
combinatorial resultant operations [9]. Also, it will generally be difficult to interpret self-intersecting 
spherical polyhedra resulting from a sequence of design operations.  

2. Rigidity circuits, self-stress, and polyhedral liftings  
This section explains the main concepts employed from rigidity theory on graphs used in the design 

workflow proposed in section 3 including rigidity circuits, polyhedral scenes, and combinatorial 
resultants.  

2.1. Rigidity circuits  
The topology of a form diagram can be abstracted as a graph G = (V, E). Such graphs can be realized 

into a bar-joint framework (G,p) by a configuration map p: V → ℝ! which maps abstract vertices to 
points in plane[11]. (G,p) is called generic if the vertex coordinates are algebraically independent, i.e. 
there is no non-zero polynomial with rational coefficients in the coordinates which evaluate to zero[11].   
Self-stresses in frameworks are dependent on both the combinatorial graph structure and its geometric 
embedding[8]. This section mainly investigates the combinatorial properties of self-stressable 
frameworks.  
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2.1.1 Laman graphs and rigidity circuits  
In two-dimensional rigidity theory, there are certain counting rules on the combinatorial structure of a 

graph which makes its realizations generically rigid. The family of generically rigid graphs called Laman 
graphs satisfies the following (2,3) sparsity property : |E| = 2|V| − 3 and for every subgraph on a subset 
of vertices  V" ⊂ V, |E"| ≤ 2|V"| − 3 [12] Sparsity of graphs can be conveniently checked  using the 
pebble-game algorithm[13]. Laman graphs are also equivalent to the bases of the rigidity matroid of 
which the ground set is the edges of the complete graph K# on n vertices[14]. In structural engineering, 
structures with Laman graph structures are minimally rigid, in that the removal of any edge makes the 
structure unstable.  

A rigidity circuit is a minimally dependent set of edges, which satisfies that removing any edge from 
the graph results in a Laman graph. Formally, a graph G=(V, E) is a rigidity circuit if  |E| = 2|V| − 2 
and for every proper subgraph on a subset of vertices  V" ⊂ V, |E"| ≤ 2|V"| − 3 [12]. Applying the 
extended Maxwell’s counting rule on the count of self-stresses and mechanisms[15] ,  

e − 2v + 3 = 1 = s −m							(s ≥ 0,m ≥ 0)	 

where s is the number of self-stress states and m is the number of mechanisms. The topology of rigidity 
circuits always guarantees one self-stress state in the corresponding framework.  

 

Figure 1 Rigidity circuits and their polyhedral liftings 

Typical rigidity circuits with 4 to 8 vertices are shown in Figure 1(a). It should be noted that not all 
graphs with e=2v-2 are rigidity circuits. Such exceptions always contain a rigidity circuit as a subgraph, 
which is equivalent to a locally contained self-stress.  

 In generically embedded rigidity circuits, there should be no edge with zero stress in the induced self-
stress. However, an embedding of vertices in ℝ!satisfying special geometric conditions may violate 
these properties: when a framework corresponds to a projected picture of a polyhedron, there exists 
additional unexpected self-stresses and infinitesimal mechanisms[8]. If a subgraph of a rigidity circuit 
with e<2v-2 satisfies such conditions, the self-stress state will be contained in the subgraph making the 
stress zero in edges of the complementary graph[16]. Nevertheless, these geometric conditions on the 
vertex configuration are strict and cannot be satisfied even by small perturbations[17]. 

2.2. Spherical polyhedra and polyhedral scenes  
The correspondence between convex polyhedra and planar 3-connected frameworks with self-stress 

can be extended to planar 2-connected frameworks, which may be lifted into spherical polyhedra 
including peculiar forms with self-intersections. Any spherical polyhedron can be described with the 
incidence structure of its vertices and faces. Whiteley[18] shows that a generic framework in plane can 
be lifted into a unique spherical polyhedron up to lifting equivalence with no non-zero dihedral angle if 
and only if the underlying graph is a rigidity circuit. This unique lifting fully defines the self-stress state 
with no redundant edges. 

 Figure 1 illustrates polyhedral liftings and self-stress states in rigidity circuits. The interior convex and 
boundary concave edges are defined to be in compression, while the opposites are in tension. Change of 
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orientation due to self-penetrations and self-intersecting faces should be considered when defining the 
convexity of edges. In (a), the 2-connected double banana graph with (V,E)=(6,10) always lifts into a 
polyhedron with two crossing faces. Figure 1(c) shows the lifting of a graph with (V,E)=(12,22) which 
turns inside-out and has a self-intersecting face. The underlying graph is planar, but embedded with 
overlapping edges which is separated into three layers for clarity. The resulting stress in the domain can 
be calculated by adding the stresses of the overlapping edges projected to the same region.  

2.3. Combining and decomposing rigidity circuits   
Circuits can be combined and decomposed into circuits, just as self-stresses in frameworks can be 

superposed or separated into distinct self-stresses. Two main graph operations that preserve the 
properties of rigidity circuits described in Malic and Streinu[9] are summarized here.   

1.   The edge-split operation (Henneberg-II extension) enables inductive construction of any 3-
connected rigidity circuit. Figure 2(a) explains the sequence of the operation: An edge uv is deleted 
from the graph, a new vertex a is added, then connected to the existing vertices u, v, w by adding 
three new edges. The inverse edge-split operation deletes one degree 3 vertex and adds one edge. 
Both operations preserve the characteristics of rigidity circuits.  

2.   The combinatorial resultant operation on rigidity circuits is the process of combining two rigidity 
circuits with non-empty intersections and deleting one common edge. In order to preserve the edge 
count e=2v-2 of the resulting graph, the intersecting subgraph must be Laman[12]. However, 
rigidity circuits are still not fully closed under combinatorial resultant operations because there are 
no known conditions under which the (2,3) sparsity property for every proper subgraph is preserved, 
except for when the common graph is a single edge.   

 

Figure 2 Operations of rigidity circuits and their polyhedral counterparts  

According to Malic and Streinu[9], any rigidity circuit can be constructed via combinatorial resultants 
from the smallest circuit, which is the K4 graph. Also, any rigidity circuit can be decomposed into two 
circuits whose resultant is the original circuit. This permits the representation of the internal structure of 
a circuit as a rooted binary tree.   

3. Applications to Strut-tie Network design  
The proposed workflow is shown in Figure 3.  The input data consists of the input domain, boundary 

conditions, and external load cases. The full input domain is then divided into sub-regions to reduce the 
complexity of the form diagram and provide more flexibility. Next, the directions and magnitudes of 
boundary forces are set either fully or partially for each region. Subsequent steps involve constructing 
the initial form circuit with the Airy stress polyhedron and then applying graph operations mentioned in 
Section 2, which will be described in detail in the following paragraphs. The step involving saving the 
operation is necessary to reconstruct the load path when changes in the external forces occur. This step 
is not detailed in this paper, to be developed in further research.  
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Figure 3 Overview of design workflow using rigidity circuit and local Airy polyhedra 

3.1. Construction of initial form diagram  

 

Figure 4 Constructing the twin-layered Airy polyhedron 

After designating the boundary forces in a region, nodes and edges must be added to construct a form 
diagram corresponding to a planar rigidity circuit. To develop a systematic way of adding edges and 
vertices, the edges are classified into 4 categories: external force edges, funicular edges, perimeter edges, 
and internal edges. The lifted polyhedron is interpreted as a twin-layered Airy stress function as in [19]. 
The first two categories form the external layer which ensures the equilibrium of boundary forces, while 
the perimeter and internal edges composing the internal layer correspond to internal load paths. The 
perimeter edges form the common boundary of the two layers, always forming a closed polygon 
connecting the points where load is applied. This polygon is typically not coplanar when lifted. Let 
f$ , 𝑓% , 𝑓&, 𝑓' denote the numbers of the external, funicular, perimeter, and internal edges respectively. 
From previous steps the number of perimeter and external edges are known. If the direction of all 
boundary forces are fixed, the two edge counts are equal. The number of internal and funicular edges 
are determined by counting the number of edges and vertices of the assembled diagram: e = f( + 𝑓$ +
𝑓% + 𝑓' and v = f( + 𝑓% + k. The constant k equals 0 when the funicular polygon is closed and 1 when 
it is open.  

The edge count e=2v-2 and Laman subgraph condition of rigidity circuits imposes constraints on 
adding funicular and internal edges. One example is when the number of funicular edges is set equal to 
the external force edges , 𝑓$ =	𝑓%  . In this case, the external layer is in the structure of a polygon 
surrounded with quads. It is clear that a graph containing this layer cannot be a rigidity circuit, since 
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removing any edge from this layer would make the graph non-rigid. Equivalently, the graph does not 
have a corresponding lifting in general, except when the vertices are in special position. To resolve this, 
an external force edge is added to triangulate one of the quads. Here, a circuit can be constructed upon 
adding adequate internal edges.   

When the directions and magnitudes of all external forces are already computed or predefined to satisfy 
static equilibrium, the funicular polygon geometry can be easily found from the force diagram. The 
direction of the edges of the funicular polygon can be obtained by choosing any point in the reciprocal 
force diagram and coning the force polygon. Although the exact geometry of the previous force layer 
with quads can be found in this way, the extra force edge is still required to remove instabilities in lifting 
computations. The chosen point may coincide with the vertices of the force polygon, which reduces the 
number of funicular edges.  

 

Figure 5 Initial form diagram alternatives of the region in Figure 4 

 Initial form diagram alternatives and their polyhedral liftings of a sample design domain with 6 
boundary points and 6 known external forces is illustrated in Figure 5. Once the external force polygon 
is drawn, the number of funicular forces can be chosen to be 6 as in (a) or 3 as in (b). In (a), an additional 
external force edge is inserted, whose crease angle in the lifting is approximately 0. These edges would 
be termed ‘inactivated’ since the force in the edge is zero in the self-stress of the circuit.  

 Using rigidity circuits as form diagrams is especially effective when the directions and magnitudes 
of some external forces are not fixed. The external force edges can be moved around slightly to account 
for changes in direction. The nodes of the funicular polygon can be moved in the direction of incident 
external force edges to account for changes in magnitudes only. It is important to note that the chosen 
topology of funicular forces may limit the ‘degree of freedom’ of possible equilibrium forces. Consider 
the form diagrams in Figure 5. Since there are 6 external forces, the degree of static indeterminacy is 
3. In 5(b), only two vertices of the open funicular polygon are free to move around in the external force 
direction. This reduces the force indeterminacy to 2. In contrast, in the form diagram in 5(d) one 
external force edge is added, with two force edges used to represent the unknown force in one vertex. 
This underlying topology can model the whole space of admissible equilibrium forces, but increases 
the number of exact vertex positions to be defined. Careful construction of the funicular edges is 
essential for simplicity of local polyhedra and robust updating of boundary forces shared by two regions.  

3.2. Modification of forces in the internal layer  
Unlike the existing policy-based design algorithm in load path design [2], this stage begins from an 

already connected force network. The perimeter and internal edges are the main objects for load path 
modification. 
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Figure 6 Local modifications of perimeter and internal forces 

The graph operations described in section 2 are reformulated to define operations form diagrams 
embedded in plane. All operations must preserve the circuit properties and planarity of the form graph.  

First, the edge-split operation is used to split an edge by a point on that edge and add a new edge 
connecting the point to the original diagram. The new edge must split a face in the internal layer of the 
Airy polyhedron. These two restrictions are required to avoid complete reconstruction of the polyhedron 
during the design phase. Namely, if the splitting point is in generic position, this operation might result 
in non-planar faces and the polyhedron is no longer valid. The newly added edge is inactivated, meaning 
that the force is zero in the edge in the self-stress state of the circuit. This edge can be activated with 
following resultant operations. Thus, this operation can be viewed as subdivision of edges to control the 
lengths of load paths.  

Next, the combinatorial resultant operation which combines two circuits is interpreted as replacing a 
stressed edge with a network of forces equilibrated by the edge. Note that this edge is completely 
removed from the graph, unlike the inactivated edges mentioned above. In order to maintain planarity 
of the graph, the common Laman subgraph of the two operands must be planar.  

In the polyhedral setting, liftings of circuits can be adjoined to the original polyhedron to remove the 
dihedral angle corresponding to the deleted edge. This requires that the adjacent faces to the edge in the 
original and adjoined polyhedra are overlapped. Also, the common Laman subgraph of the original 
circuit and the circuit to be combined must match the skeleton of connected faces in the Airy polyhedron. 
Once the common faces are identified, they are deleted from both polyhedra and the remaining faces are 
glued together on the boundary of the removed faces. The boundaries of the overlapping faces are 
modified by either addition or subtraction of faces regarding its orientation. The closed spherical 
polyhedra may be self-intersecting itself or contain self-intersecting faces.   

The main challenge is to find a lifting of the added network that contains the same subset of faces. If 
the common graph is equivalent to three or more faces, then this problem is over-constrained and there 
might be no solutions. This is because liftings of generic rigidity circuits are uniquely determined when 
the lifting of one face and one additional information such as the position of a vertex or a dihedral angle 
of one edge is given [20]. For clarity, we narrow down the cases of common Laman subgraphs to a 
single edge and a single triangular face. Methods to combine circuits with larger common subgraphs in 
the polyhedral domain without violating graph planarity are subject to future research.  

 Figure 6 shows an example of a sequence of form diagram operations applied to the initial polyhedron 
in Figure 4. The first operation splits the central edge without changing the load path, adding two edges 
and one vertex to the topology. This edge is then activated by a resultant operation with a K4 graph lifted 
into tetrahedra.  

Some simple strut-tie network alterations using rigidity circuits and Airy polyhedra inspired from 
typical d-regions in concrete design are illustrated in Figure 7.  Initial load paths are modified using both 
types of operations. In Figure 7(a) (ii), it is notable that the same polyhedron can be obtained from two 



Proceedings of the IASS Symposium 2024 
Redefining the Art of Structural Design 

 

 

 8 

 

different resultant operations, where the common subgraph is respectively set as a triangle and a single 
edge. Figure 7(b)-(ii) shows overlap in load paths projected to the domain, resulting in the typical strut-
tie model of an opening joint.  

 

Figure 7 First-step operations on form diagrams of shear panel and joint-type domains 

4. Design examples and discussion  
 Figure 8 shows the application of the proposed framework to generate typical load paths in beams with 

holes and dapped ends[21, 22].  Initial form diagrams, design alternatives and their corresponding local 
Airy polyhedra are shown for each domain. Two types of graph operations were performed, preserving 
the planarity of the graph and the existence of the spherical Airy polyhedron. Once the rigidity circuit 
force network is determined, designers can move the vertices around to accommodate for changes in the 
domain boundaries. This provides designers with greater control over the form diagram. While rigidity 
circuits cannot represent all feasible load paths with higher indeterminacies, simple load paths and stress 
fields can be determined and updated automatically by directly updating the Airy polyhedron, without 
iterative calculations. This rigidity circuit-based design framework would encourage a more static-
focused conceptual design phase in architectural design practices.  

 

Figure 8 Design example of dapped-ended beams / beams with holes – load paths and Airy polyhedra 
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Figure 9 shows an example of local load path design in a non-convex, bridge pier-shaped domain. 
Perimeter forces violating the domain boundaries are removed with three combinatorial resultant 
operations. The rightmost diagram illustrates the designed load path when the direction of vertical 
loading is skewed to the right and the direction of one force is reversed, obtained from the same sequence 
of graph/polyhedral operations. This example demonstrates that force networks modeled as rigidity 
circuits always admit a state of equilibrium, irrelevant to variations in external load directions.  

 

Figure 9 Design example – robustness of rigidity circuit force networks with varying load directions 

Designing force networks in multiple sub-regions becomes more complex, as the change in magnitude 
or direction of external loads in one region would propagate to other regions by shared boundary forces. 
The number of independent boundary forces shared by two regions determines whether the form diagram 
and Airy polyhedron must be reconstructed. If there is only one independent force edge connecting two 
regions, the values can simply be scaled without having to update the network. The exact interaction 
between external force layers of neighboring sub-regions is planned to be investigated in future studies.  

5. Conclusion  
  This paper extended the existing Airy-stress function-based planar strut-tie design framework using 
rigidity circuits, spherical polyhedra, and graph operations. The main advantages of new developments 
include: resilient exploration of load paths with sparse connectivity, direct modification of load paths 
without iteration, and its robustness under changes in external loads. The next goal is to bring the design 
framework into the computational domain and provide automated construction and updates of form 
diagrams, along with geometric manipulations that interactively updates the stored circuit tree data.   

  There are several theoretical and practical limitations in this framework. Above all, it must be clarified 
how much the choice of the topology and geometry of the funicular affects the space of equilibrium 
forces compatible with the form diagram. Regarding internal manipulations, further study in rigidity 
theory and graph composition techniques would help develop more clear rules concerning graph 
operations and reduce ambiguity in the topological properties of resulting graphs. Also, projective 
transformation of Airy polyhedra is worth investigating, which may provide insights into modeling 
networks with multiple forces in the same lines of action.  

 The load paths designed by this method may be considered inferior to optimization-based models in 
terms of structural performance. Nevertheless, the concept of stress decomposition into smaller circuits 
shows the possibility of integrating the proposed framework to such models to explore close-to-optimal 
solutions by manipulating local circuits. Overall, the proposed design approach deepens designers’ 
insights into the states of equilibrium in structures, in that they can try combining stressed networks and 
inspect the impact of the operation through polyhedral representations.   
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