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Abstract

A plastic limit load solution considering plastic development depth is derived in this paper for plate
under combined tension and bending with any load ratio. The results show that for the load ratio
within the range of less than -1/6 or greater than 1/6, the stress at the edge of the section increases until
the yield strength of the material, and then develops into a full section plastic state (plastic hinge) that
includes both the tensile and compressive zones. For the load ratio within the range from -1/6 to 1/6,
the stress at the edge of the section will not continue to increase until the yield strength and enter the
full section tensile (compression) plastic state. Instead, it will increase to a certain value and gradually
decrease to 0, then increase in the opposite direction to the yield strength and eventually develop into
plastic hinge state. Given that the non-conservatism for applying the limit load of plastic hinge state to
the actual engineering, plastic development depth has been introduced. The new plastic limit load
solution considering plastic development depth is suitable for component or structure design and
safety evaluation.
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1. Introduction

In plastic analysis, as the load increases, components or structures undergo plastic deformation.
When a section reaches the state of a plastic hinge, the corresponding load is termed the plastic limit
load. The plastic limit load plays a crucial role in the design, safety assessment, and stability assurance
of components or structures. Many textbooks on structural mechanics and plasticity mechanics provide
detailed descriptions of calculating the plastic limit load under pure bending loading conditions[1-3].
For loading states where axial force and bending moment act together, the analysis typically focuses
on bending-dominant conditions (where the normal stress due to bending in the elastic state exceeds
that due to axial force). In such states, as the load increases, the section's stress state transitions from
elastic to elastic limit (where the maximum stress in the tensile region reaches the material's yield
strength), then enters the plastic state in the tensile region, progressing to the plastic state in the
compression region (where the maximum stress in the compression area reaches the yield strength),
and finally reaches full section plasticity and the plastic hinge state, at which the load corresponds to
the plastic limit load. However, it is still unknown whether sections under axial-dominant conditions
(where the normal stress due to bending is less than or equal to that due to axial force) follow the same
pattern. Additionally, in actual components or structures, only partial sections are allowed to enter
plasticity, necessitating the introduction of the concept of plastic development depth. How the plastic
load corresponding to different plastic development depths should be calculated has not yet been
reported.
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Therefore, this paper conducts a detailed theoretical analysis of the plastic development process
for flat plates subjected to combined axial force and bending moment, considering any load ratio. By
introducing the concept of plastic development depth, it calculates the plastic load corresponding to
different load ratios and development depths, providing parameters for the design and safety
assessment of components or structures in engineering.

2. Parameters definition

Figure 1(a) shows a flat plate subjected to an axial force o, and a bending moment o,, . The plate

has a length / , a cross-sectional width 5, and a cross-sectional height 4 . The load ratio A is defined
as A = M/ Nh . Both are subjected to simple loading. Figure 1(b) illustrates the stress distribution of the
section under the effects of axial force and bending moment. In the elastic state, the normal stress
induced by the axial force is o, = N/bh and the normal stress induced by the bending moment
iso, =6M / bh’ .1t is stipulated that positive normal stress causes the section to be in tension (positive)
and compression (negative). The material is assumed to be an ideal elastic-plastic material with a
modulus of elasticity £ and a yield strength o, .The yield strength in the tensile zone is considered

positive, and in the compressive zone, it is negative.
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(a) The dimension of flat plate (b) The stress distribution of section

Figure 1 Parameters definition

3. Analyses of plastic development for plate loaded by positive axial force and moment
3.1. Case 1 for load ratio A >1/6

3.1.1. Elastic period
For A >1/6, the normal stress generated by the axial force o, (Figure 2(a)) is less than the normal
stress generated by the bending moment o, (Figure 2(b)). Therefore, during the elastic stage, the stress

state of the section is in a tension-below and compression-above distribution (Figure 2(c)). When the
maximum tensile stress in the tension region reaches the material's yield strength, the section is at its
elastic limit (Figure 2(d)). The elastic limit axial force and bending moment are as shown in Equation

(1):

6M N bh
Oy toy=—5+—=0, N, = o,
bh™  bh 64+1
M - P (1)
A=— M, = thO'y
Nh 64+1
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3.1.2. Plastic Period for Tension Region

As the load increases, the tension region enters the plastic state (Figure 2(e)). The plastic
development depth in the tension region d = uh , is introduced to calculate the plastic axial force and

moment.

Based on similar geometric relationships, the heights 4, and 4, can be calculated as shown in
Equation (2):

hy+hy = (1= u)h [hf —Z (1= p)h
o, > ' )

ho

9y
h2

The plastic axial force and moment can be determined from the axial force balance equation and
the moment balance equation, as shown in Equations (3) and (4):

1 1
N = pubho, + Eb (h, —h,)x (—0'x +o, )= zbh [(1+ po,+ (1-u o, ] 3)
h wph) 1 h h 1 h h
M= ubho (T”?% Pl (5- 3 ”’7]+ 27 o (2— ?‘j @

L (1= )1 2008,

Introducing the load ratio A = M/Nh into the above equations allows expressing the compressive
stress o, using the tension region's plastic development depth coefficient ¢ and the load ratio 4, as
shown in Equation (5):

o - —6/1(1+y)+(1—,u)(1+2,u)o_
A (1-p)(1+2u+62) ’

Substituting the above into Equations (3) and (4), the plastic axial force and moment expressed by
the load ratio A and the plastic development depth coefficient 4 in the tension region are obtained, as

)

shown in Equations (6) and (7):

N=—bho
P (6)
1+2u
M—;bhza
1,6 ' (7)
A 1+2u

An analysis of the function's increase or decrease for Equation (5) reveals that for any load ratio
greater than 1/6, as the plastic development depth in the tension region increases, the compressive
stress gradually increases, and the plastic axial force and moment also increase. When the compressive
stress reaches the material's yield strength (Figure 2(f)), the plastic development depth coefficient at
this point is as shown in Equation (8):

2
,u=1_6i+ (64-1)" +8 ®)
4 4
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Therefore, for any load ratio greater than 1/6, when the plastic development depth in the tension
region is less than the limit given by Equation (8), the plastic axial force and moment can be calculated
using Equations (6) and (7).

3.1.3. Plastic Period for Compressive Region

As the load further increases, the compressive region also enters the plastic state (Figure 2(g)).
The plastic development depth in the compressive regiond = vh is introduced to calculate this phase's

plastic axial force and moment.

The plastic axial force and moment can be calculated from the axial force balance equation and
the moment balance equation, as shown in Equations (9) and (10):

N = ubho ,—vbho, =bh (,u -v )0'y 9)
M = ubho x(ﬁ—ﬂ—hj—lbxl_#—_vhxa x(l—x Hl;vhﬂuh—h—)
Y \2 2 2 2 Y3 2 2
+vbho, x h_vh +lb><1_ﬂ—_vh><0' x h_ l—x 1_’u—_vh—vh (10)
Y2 2 2 2 Y2 3 2

1
:g(_z/f -2+ /1+1/+2yv+1)bhzay

Introducing the load ratio into these equations allows expressing the compressive region's plastic
development depth coefficient v using the tension region's plastic development depth coefficient xz and

the load ratio A, as shown in Equation (11):

v =%[(1+2y+6/1)— /()] j{(uzwm )- \/12 (422+1)-12 [,u— l;ﬁﬂ (11)

Substituting the above into Equations (9) and (10), the plastic axial force and moment expressed
by the load ratio 4 and the plastic development depth coefficient in the tension region u are obtained,

as shown in Equations (12) and (13):

N:%[(2y—1—6/1)+1/f(yﬂbho-y (12)
M:%/1[(2y—1—6i)+./f(,u)}bhzo-y (13)

An analysis of the function's increase or decrease for Equation (11) reveals that for any load ratio
greater than 1/6, as the plastic development depth in the tension region increases, the plastic
development depth in the compressive region gradually increases, and the plastic axial force and
moment also increase. When the sum of the plastic development depths in the compressive and tension
regions equals the section height hh, the section's stress distribution exhibits a plastic hinge state
(Figure 2(h)), with the plastic development depth coefficient in the tension region as shown in
Equation (14):

,u=%[M—(2/1—1)J (14)

Substituting Equation (14) into Equations (12) and (13), the plastic limit axial force and moment
are obtained, as shown in Equations (13) and (14):

N, = (\/412 N —2/1)bhay (15)
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M, = /1(\/4,12 +1-22 )bhzay (16)

Thus, for any load ratio greater than 1/6, when the plastic development depth in the tension region
is greater than the limit given by Equation (8) but less than that given by Equation (14), the plastic
axial force and moment can be calculated using Equations (12) and (13).

Oy - Oy oy 6, =0, o, =0, o, =0y
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= — — Iy N N >\ R
_ d=uh
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Figure 2 The plastic development analyses for case 1

3.2. Case 2 for load ratio0< A1 <1/6

3.2.1. Elastic period
For0<A<1/6, the normal stress generated by the axial force o, (Figure 3(a)) is more than the
normal stress generated by the bending moment o,, (Figure 3(b)). Therefore, during the elastic stage,

the stress state of the section has no compressive region, and the tension stress in the lower edge is
larger than that in the upper edge (Figure 2(c)). When the maximum tensile stress in the tension region
reaches the material's yield strength, the section is at its elastic limit (Figure 3(d)). The elastic limit
axial force and bending moment are the same as Equation (1).

3.2.2. Plastic Period for Tension Region

As the load increases, the tension region enters the plastic state (Figure 3(e)). The plastic
development depth in the tension region d = uh , is introduced to calculate the plastic axial force and
moment.

The plastic axial force and moment can be determined from the axial force balance equation and
the moment balance equation, as shown in Equations (3) and (4). Introducing the load
ratio A = M/ Nh into the above equations allows expressing the compressive stress o, using the tension
region's plastic development depth coefficient # and the load ratio A , as shown in Equation (5).
Substituting the above into Equations (3) and (4), the plastic axial force and moment expressed by the
load ratio A and the plastic development depth coefficient x in the tension region are obtained, as
shown in Equations (6) and (7).

Perform a functional increase/decrease analysis on Equation (5), and it should be noted that the
range of load ratio values at this point is0 < A <1/ 6. Within this range, the variation of tensile stress at

the upper edge of the section is significantly different from when the load ratio is greater than 1/6.

When the depth coefficient of plastic development in the tensile zone is satisfied with 0 < g < 1-64 ,

1-64 (1-61)(9-64)
O'ytO 5
1+64 9(24+1)

1-64 V=64 (Vi-62+0-62)
Su< y

(Figure 3 (g)). When u continues to increase, it becomes negative and changes from tensile stress to

the tensile stress at the upper edge o, gradually increases from (Figure 3

()). When u is satisfied with , o, gradually decrease to 0

compressive stress (Figure 3 (h)) until it reaches the yield strength of the material (Figure 3 (1)), at
which point the plastic development depth coefficient u is the same as Equation (8). However,

regardless of the variation of tensile stress at the upper edge of the section, the plastic axial force and
bending moment both increase with the increase of plastic development depth in the tensile zone.
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Therefore, for any load ratio satisfied with0 < 4 <1/6, when the plastic development depth in the
tension region is less than the limit given by Equation (8), the plastic axial force and moment can be
calculated using Equations (6) and (7).

3.2.3. Plastic Period for Compressive Region

The calculation process at this section is consistent with 3.1.3, and the expression is also exactly
the same, so it will not be repeated.

[
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Figure 3 The plastic development analyses for case 2

3.3. Case 3 for load ratioA=1/6

This situation is consistent with the analysis process in 3.2, with the only difference being that
during the plastic development process in the tensile zone, the tensile stress at the upper edge of the
section changes from 0 to a negative value (compressive stress), and the other expressions are
completely consistent with case 2. Here, only a diagram of the plastic development process is provided,
as shown in Figure 4.
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Figure 4 The plastic development analyses for case 3

4. Plastic load expression under any combination of positive or negative axial forces and
bending moments

The third section provides a detailed theoretical analysis and formula deduction for a flat plate
under the combined action of positive axial force and positive bending moment. For other
combinations, the analysis process is similar, and the expression only has a difference of positive and
negative signs. Here is a list of the positive and negative values of each parameter under different
combinations, as shown in Table 1.

Table 1 Summary of Positive and Negative Parameters

Axial force Bending moment Yield strength Load ratio
N M o, A
- - - +
n - - _
R + R -
- - + +

5. Conclusion

This paper conducts a detailed theoretical analysis of the plastic development process for flat
plates subjected to combined axial force and bending moment, considering any load ratio. By
introducing the concept of plastic development depth, The plastic load corresponding to different load
ratios and development depths can be calculated. The results show that for the load ratio within the
range of less than -1/6 or greater than 1/6, the stress at the edge of the section increases until the yield
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strength of the material, and then develops into a full section plastic state (plastic hinge) that includes
both the tensile and compressive zones. For the load ratio within the range from -1/6 to 1/6, the stress
at the edge of the section will not continue to increase until the yield strength and enter the full section
tensile (compression) plastic state. Instead, it will increase to a certain value and gradually decrease to

0, then increase in the opposite direction to the yield strength and eventually develop into plastic hinge
state.
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